Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Elementary Differential Equations and Boundary Value Problems, 9 th edition,

Slides:



Advertisements
Similar presentations
Boyce/DiPrima 9th ed, Ch 2.4: Differences Between Linear and Nonlinear Equations Elementary Differential Equations and Boundary Value Problems, 9th edition,
Advertisements

Boyce/DiPrima 9th ed, Ch 2.8: The Existence and Uniqueness Theorem Elementary Differential Equations and Boundary Value Problems, 9th edition, by William.
Boyce/DiPrima 9th ed, Ch 2.7: Numerical Approximations: Euler’s Method Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Boyce/DiPrima 9th ed, Ch 3.5: Nonhomogeneous Equations;Method of Undetermined Coefficients Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 9th ed, Ch 2.3: Modeling with First Order Equations Elementary Differential Equations and Boundary Value Problems, 9th edition, by William.
Boyce/DiPrima 10th ed, Ch 10.1: Two-Point Boundary Value Problems Elementary Differential Equations and Boundary Value Problems, 10th edition, by William.
Boyce/DiPrima 9th ed, Ch 2.5: Autonomous Equations and Population Dynamics Elementary Differential Equations and Boundary Value Problems, 9th edition,
A second order ordinary differential equation has the general form
Ch 3.5: Nonhomogeneous Equations; Method of Undetermined Coefficients
Ch 2.2: Separable Equations In this section we examine a subclass of linear and nonlinear first order equations. Consider the first order equation We can.
Ch 3.4: Repeated Roots; Reduction of Order
Ch 2.1: Linear Equations; Method of Integrating Factors
Ch 2.6: Exact Equations & Integrating Factors
Math 3C Practice Midterm #1 Solutions Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB.
Ch 3.5: Repeated Roots; Reduction of Order
Ch 2.1: Linear Equations; Method of Integrating Factors
Math 3120 Differential Equations with Boundary Value Problems
Ch 1.2: Solutions of Some Differential Equations
Boyce/DiPrima 10th ed, Ch 10.2: Fourier Series Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and Richard.
Boyce/DiPrima 9 th ed, Ch 3.1: 2 nd Order Linear Homogeneous Equations-Constant Coefficients Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 10th ed, Ch 10.5: Separation of Variables; Heat Conduction in a Rod Elementary Differential Equations and Boundary Value Problems, 10th.
Boyce/DiPrima 9th ed, Ch 7.3: Systems of Linear Equations, Linear Independence, Eigenvalues Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 9th ed, Ch 3.4: Repeated Roots; Reduction of Order Elementary Differential Equations and Boundary Value Problems, 9th edition, by William.
Ch 2.2: Separable Equations In this section we examine a subclass of linear and nonlinear first order equations. Consider the first order equation We can.
Boyce/DiPrima 9 th ed, Ch 2.7: Numerical Approximations: Euler’s Method Elementary Differential Equations and Boundary Value Problems, 9 th edition, by.
Boyce/DiPrima 9th ed, Ch 8.4: Multistep Methods Elementary Differential Equations and Boundary Value Problems, 9th edition, by William E. Boyce and Richard.
Math 3120 Differential Equations with Boundary Value Problems
Boyce/DiPrima 9 th ed, Ch 11.5: Further Remarks on Separation of Variables: A Bessel Series Expansion Elementary Differential Equations and Boundary Value.
Boyce/DiPrima 9 th ed, Ch 8.5: More on Errors; Stability Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce.
LURE 2009 SUMMER PROGRAM John Alford Sam Houston State University.
Boyce/DiPrima 9 th ed, Ch 5.1: Review of Power Series Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce.
Boyce/DiPrima 9 th ed, Ch 1.1: Basic Mathematical Models; Direction Fields Elementary Differential Equations and Boundary Value Problems, 9 th edition,
Boyce/DiPrima 9th ed, Ch 4.2: Homogeneous Equations with Constant Coefficients Elementary Differential Equations and Boundary Value Problems, 9th edition,
Boyce/DiPrima 9 th ed, Ch 2.7: Numerical Approximations: Euler’s Method Elementary Differential Equations and Boundary Value Problems, 9 th edition, by.
Boyce/DiPrima 9 th ed, Ch 10.8: Laplace’s Equation Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce and.
Boyce/DiPrima 9 th ed, Ch 3.2: Fundamental Solutions of Linear Homogeneous Equations Elementary Differential Equations and Boundary Value Problems, 9 th.
Ch 1.2: Solutions of Some Differential Equations Recall the free fall and owl/mice differential equations: These equations have the general form y' = ay.
Boyce/DiPrima 9th ed, Ch 1.2: Solutions of Some Differential Equations Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Boyce/DiPrima 9th ed, Ch 4.1: Higher Order Linear ODEs: General Theory Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Boyce/DiPrima 9 th ed, Ch 7.6: Complex Eigenvalues Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce and.
Boyce/DiPrima 9 th ed, Ch 6.2: Solution of Initial Value Problems Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William.
Ch 2.1: Linear Equations; Method of Integrating Factors A linear first order ODE has the general form where f is linear in y. Examples include equations.
Math 3120 Differential Equations with Boundary Value Problems
Boyce/DiPrima 9th ed, Ch 3.3: Complex Roots of Characteristic Equation Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Boyce/DiPrima 9 th ed, Ch 2.2: Separable Equations Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce and.
Boyce/DiPrima 9 th ed, Ch 11.3: Non- Homogeneous Boundary Value Problems Elementary Differential Equations and Boundary Value Problems, 9 th edition, by.
Boyce/DiPrima 9 th ed, Ch1.3: Classification of Differential Equations Elementary Differential Equations and Boundary Value Problems, 9 th edition, by.
Boyce/DiPrima 9 th ed, Ch 6.1: Definition of Laplace Transform Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William.
Boyce/DiPrima 9 th ed, Ch 6.3: Step Functions Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce and Richard.
Boyce/DiPrima 9 th ed, Ch 2.6: Exact Equations & Integrating Factors Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William.
Boyce/DiPrima 10th ed, Ch 7.9: Nonhomogeneous Linear Systems Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E.
Boyce/DiPrima 10th ed, Ch 6.2: Solution of Initial Value Problems Elementary Differential Equations and Boundary Value Problems, 10th edition, by William.
Boyce/DiPrima 10th ed, Ch 10.3: The Fourier Convergence Theorem Elementary Differential Equations and Boundary Value Problems, 10th edition, by William.
Boyce/DiPrima 10th ed, Ch 10.8: Laplace’s Equation Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and.
Boyce/DiPrima 10th ed, Ch 6.6: The Convolution Integral Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E.
Boyce/DiPrima 10th ed, Ch 6.3: Step Functions Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and.
Boyce/DiPrima 9th ed, Ch 2.7: Numerical Approximations: Euler’s Method Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Boyce/DiPrima 10th ed, Ch 6.1: Definition of Laplace Transform Elementary Differential Equations and Boundary Value Problems, 10th edition, by William.
Boyce/DiPrima 10th ed, Ch 7.7: Fundamental Matrices Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and.
Boyce/DiPrima 10th ed, Ch 7.8: Repeated Eigenvalues Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce.
A second order ordinary differential equation has the general form
Ch 2.1: Linear Equations; Method of Integrating Factors
Ch 4.4: Variation of Parameters
Boyce/DiPrima 10th ed, Ch 7.5: Homogeneous Linear Systems with Constant Coefficients Elementary Differential Equations and Boundary Value Problems, 10th.
Boyce/DiPrima 10th ed, Ch 6.4: Differential Equations with Discontinuous Forcing Functions Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 9th ed, Ch 4.3: Nonhomogeneous Equations: Method of Undetermined Coefficients Elementary Differential Equations and Boundary Value Problems,
Ch 1.2: Solutions of Some Differential Equations
Boyce/DiPrima 9th ed, Ch 3.6: Variation of Parameters Elementary Differential Equations and Boundary Value Problems, 9th edition, by William E. Boyce.
Boyce/DiPrima 10th ed, Ch 7.6: Complex Eigenvalues Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and.
Presentation transcript:

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce and Richard C. DiPrima, ©2009 by John Wiley & Sons, Inc. A linear first order ODE has the general form where f is linear in y. Examples include equations with constant coefficients, such as those in Chapter 1, or equations with variable coefficients:

Constant Coefficient Case For a first order linear equation with constant coefficients, recall that we can use methods of calculus to solve:

Variable Coefficient Case: Method of Integrating Factors We next consider linear first order ODEs with variable coefficients: The method of integrating factors involves multiplying this equation by a function  (t), chosen so that the resulting equation is easily integrated.

Example 1: Integrating Factor (1 of 2) Consider the following equation: Multiplying both sides by  (t), we obtain We will choose  (t) so that left side is derivative of known quantity. Consider the following, and recall product rule: Choose  (t) so that

Example 1: General Solution (2 of 2) With  (t) = e t/2, we solve the original equation as follows:

Method of Integrating Factors: Variable Right Side In general, for variable right side g(t), the solution can be found as follows:

Example 2: General Solution (1 of 2) We can solve the following equation using the formula derived on the previous slide: Integrating by parts, Thus

Example 2: Graphs of Solutions (2 of 2) The graph shows the direction field along with several integral curves. If we set C = 0, the exponential term drops out and you should notice how the solution in that case, through the point (0, -7/4), separates the solutions into those that grow exponentially in the positive direction from those that grow exponentially in the negative direction..

Method of Integrating Factors for General First Order Linear Equation Next, we consider the general first order linear equation Multiplying both sides by  (t), we obtain Next, we want  (t) such that  '(t) = p(t)  (t), from which it will follow that

Integrating Factor for General First Order Linear Equation Thus we want to choose  (t) such that  '(t) = p(t)  (t). Assuming  (t) > 0, it follows that Choosing k = 0, we then have and note  (t) > 0 as desired.

Solution for General First Order Linear Equation Thus we have the following: Then

Example 3: General Solution (1 of 2) To solve the initial value problem first put into standard form: Then and hence

Example 3: Particular Solution (2 of 2) Using the initial condition y(1) = 2 and general solution it follows that The graphs below show solution curves for the differential equation, including a particular solution whose graph contains the initial point (1,2). Notice that when C=0, we get the parabolic solution (shown) and that solution separ- ates the solutions into those that are asymptotic to the positive versus negative y-axis. (1,2)

Example 4: A Solution in Integral Form (1 of 2) To solve the initial value problem first put into standard form: Then and hence

Example 4: A Solution in Integral Form (2 of 2) Notice that this solution must be left in the form of an integral, since there is no closed form for the integral. Using software such as Mathematica or Maple, we can approximate the solution for the given initial conditions as well as for other initial conditions. Several solution curves are shown.