3-D Wind Field Simulation over Complex Terrain

Slides:



Advertisements
Similar presentations
Fast Adaptive Hybrid Mesh Generation Based on Quad-tree Decomposition
Advertisements

Steady-state heat conduction on triangulated planar domain May, 2002
Efficient access to TIN Regular square grid TIN Efficient access to TIN Let q := (x, y) be a point. We want to estimate an elevation at a point q: 1. should.
DEBRIS FLOWS & MUD SLIDES: A Lagrangian method for two- phase flow simulation Matthias Preisig and Thomas Zimmermann, Swiss Federal Institute of Technology.
Simulación de la calidad del aire en la isla de Gran Canaria mediante el método de los elementos finitos y su validación con datos experimentales A. Oliver,
Local scale air quality modelling based on CMAQ forecast data A. Oliver, A. Perez-Foguet, Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica.
The Use of High Resolution Mesoscale Model Fields with the CALPUFF Dispersion Modelling System in Prince George BC Bryan McEwen Master’s project
Lectures on CFD Fundamental Equations
3D spherical gridding based on equidistant, constant volume cells for FV/FD methods A new method using natural neighbor Voronoi cells distributed by spiral.
Aspects of Conditional Simulation and estimation of hydraulic conductivity in coastal aquifers" Luit Jan Slooten.
Coupled Fluid-Structural Solver CFD incompressible flow solver has been coupled with a FEA code to analyze dynamic fluid-structure coupling phenomena CFD.
Free vs. Forced ConvectionFEFLOW ® Exercise Salt intrusion from top Vertical cross section.
1 AirWare : R elease R5.3 beta AERMOD/AERMET DDr. Kurt Fedra Environmental Software & Services GmbH A-2352 Gumpoldskirchen AUSTRIA
Parallel Mesh Refinement with Optimal Load Balancing Jean-Francois Remacle, Joseph E. Flaherty and Mark. S. Shephard Scientific Computation Research Center.
High Performance Computing 1 Parallelization Strategies and Load Balancing Some material borrowed from lectures of J. Demmel, UC Berkeley.
Visualization 2000 Tutorial Mesh-Based Methods for Multiresolution Representations Instructor: Ken Joy Center for Image Processing and Integrated Computing.
Lamps of Aladdin1 Moving Mesh Adaptation Techniques Todd Phillips Gary Miller Mark Olah.
A solar radiation model for photovoltaic and solar thermal
WIND ENSEMBLE FORECASTING USING AN ADAPTIVE MASS-CONSISTENT MODEL A. Oliver, E. Rodríguez, G. Montero.
Socorro G.V. (1), Ruiz-Gironés E. (2), Oliver A. (1), Cascón J.M. (3), Escobar J.M. (1), Sarrate J. (2) and Montenegro R. (1) CMN June 29 – July.
Morphological Analysis of 3D Scalar Fields based on Morse Theory and Discrete Distortion Mohammed Mostefa Mesmoudi Leila De Floriani Paola Magillo Dept.
Grid Generation.
CIS V/EE894R/ME894V A Case Study in Computational Science & Engineering HW 5 Repeat the HW associated with the FD LBI except that you will now use.
NUMERICAL WEATHER PREDICTION K. Lagouvardos-V. Kotroni Institute of Environmental Research National Observatory of Athens NUMERICAL WEATHER PREDICTION.
A Survey on FFD Reporter: Gang Xu Mar 15, Overview Volumn-based FFD Surface-based FFD Curve-based FFD Point-based FFD Accurate FFD Future Work Outline.
Surface Simplification Using Quadric Error Metrics Michael Garland Paul S. Heckbert.
Dobrina Boltcheva, Mariette Yvinec, Jean-Daniel Boissonnat INRIA – Sophia Antipolis, France 1. Initialization Use the.
Development of WRF-CMAQ Interface Processor (WCIP)
AMBIENT AIR CONCENTRATION MODELING Types of Pollutant Sources Point Sources e.g., stacks or vents Area Sources e.g., landfills, ponds, storage piles Volume.
University Institute of Intelligent Systems and Numerical Applications in Engineering CMN June 29 – July 2, 2015, Lisbon, Portugal.
On-line Space Sculpturing for 3D Shape Manipulation
Geometric Modeling using Polygonal Meshes Lecture 1: Introduction Hamid Laga Office: South.
A conservative FE-discretisation of the Navier-Stokes equation JASS 2005, St. Petersburg Thomas Satzger.
The Geometry of Biomolecular Solvation 2. Electrostatics Patrice Koehl Computer Science and Genome Center
Model Construction: interpolation techniques 1392.
EVAT 554 OCEAN-ATMOSPHERE DYNAMICS FILTERING OF EQUATIONS OF MOTION FOR ATMOSPHERE (CONT) LECTURE 7 (Reference: Peixoto & Oort, Chapter 3,7)
Desarrollo de un método ensemble para la predicción del viento a escala local usando elementos finitos MINECO PROGRAMA.
Georgia Institute of Technology Initial Application of the Adaptive Grid Air Quality Model Dr. M. Talat Odman, Maudood N. Khan Georgia Institute of Technology.
Air quality decision support under uncertainty (case study analysis) Piotr Holnicki Systems Research Institute PAS Warszawa, Newelska 6
Ensemble Wind Forecasting Based on the HARMONIE Model and Adaptive Finite Elements in Complex Orography.
Computational Aspects of Multi-scale Modeling Ahmed Sameh, Ananth Grama Computing Research Institute Purdue University.
© Fluent Inc. 11/24/2015J1 Fluids Review TRN Overview of CFD Solution Methodologies.
TEMPLATE DESIGN © A high-order accurate and monotonic advection scheme is used as a local interpolator to redistribute.
Types of Models Marti Blad Northern Arizona University College of Engineering & Technology.
Reverse Engineering of Point Clouds to Obtain Trimmed NURBS Lavanya Sita Tekumalla Advisor: Prof. Elaine Cohen School of Computing University of Utah Masters.
A Fully Conservative 2D Model over Evolving Geometries Ricardo Canelas Master degree student IST Teton Dam 1976.
1 Copyright by PZ Bar-Yoseph © Finite Element Methods in Engineering Winter Semester Lecture 7.
Implementation of Terrain Resolving Capability for The Variational Doppler Radar Analysis System (VDRAS) Tai, Sheng-Lun 1, Yu-Chieng Liou 1,3, Juanzhen.
Albert Oliver, Raúl Arasa, Agustí Pérez-Foguet, Mª Ángeles González HARMO17 Budapest May 2016 Simulating large emitters using CMAQ and a local scale finite.
Tetrahedral Mesh Optimization Combining Boundary and Inner Node Relocation and Adaptive Local Refinement.
Modeling of heat and mass transfer during gas adsorption by aerosol particles in air pollution plumes T. Elperin1, A. Fominykh1, I. Katra2, and B. Krasovitov1.
Unstructured Meshing Tools for Fusion Plasma Simulations
Numerical Weather Forecast Model (governing equations)
Wind Ensemble Forecasting Using Differential Evolution
Xing Cai University of Oslo
Free vs. Forced Convection
How do models work? METR 2021: Spring 2009 Lab 10.
Level of Detail (LOD) Models Part Two
Morphing and Shape Processing
“Consolidation of the Surface-to-Atmosphere Transfer-scheme: ConSAT
ECCOMAS Congress June 5-10, Crete
ATOC 4720 class32 1. Forces 2. The horizontal equation of motion.
The application of an atmospheric boundary layer to evaluate truck aerodynamics in CFD “A solution for a real-world engineering problem” Ir. Niek van.
Models of atmospheric chemistry
Local scale air quality modelling based on CMAQ forecast data
Mesh Parameterization: Theory and Practice
Ph.D. Thesis Numerical Solution of PDEs and Their Object-oriented Parallel Implementations Xing Cai October 26, 1998.
Three-Dimensional Finite Element Modeling of Stack Pollutant Emissions
Local Scale Finite Element Modelling of Stack Pollutant Emissions
Presentation transcript:

3-D Wind Field Simulation over Complex Terrain University Institute for Intelligent Systems and Numerical Applications in Engineering Congreso de la RSME 2015 – Soluciones Matemáticas e Innovación en la Industria 2-6 febrero 2015, Granada http://www.siani.es/

Meccano Method for Complex Solids Algorithm steps Meccano construction Parameterization of the solid surface Solid boundary partition Floater’s parameterization Coarse tetrahedral mesh of the meccano Partition into hexahedra Hexahedron subdivision into six tetrahedra Solid boundary approximation Kossaczky’s refinement Distance evaluation Inner node relocation Coons patches Simultaneous untangling and smoothing SUS

Meccano Method Simultaneous mesh generation and volumetric parameterization Parameterization Refinement Untangling & Smoothing

Parameter space (meccano mesh) Meccano Method Key of the method: SUS of tetrahedral meshes Optimization Parameter space (meccano mesh) Physical space (tangled mesh) Physical space (optimized mesh)

Meccano Method Surface Parameterization of M.S. Floater (CAGD 1997) From the i-th solid surface triangulation patch to the i-th meccano face Physical Space Parametric Space C D B A C’ D’ Q’k Qk Q’k =∑j j,k Q’j Fixed boundary nodes, B’ A’ Compromise between area and shape

Meccano Method Local Refinement: Kossaczky’s Algorithm (JCAM 1994)  Initial cube and its subdivision after three consecutive tetrahedron bisection 6 tetrahedra 12 tetrahedra Decimos que un tetraedro es de Tipo I si está marcado con el indicador de error. Se introducen 6 nuevos nodos en el punto medio de sus aristas y se subdividen cada una de sus cuatro caras en 4 triángulos, uniendo los puntos que se han introducido. Cuatro subtetraedros quedan determinados a partir de los cuatro vértices del tetraedro original y las nuevas aristas. Los otros cuatro tetraedros se obtienen al unir los dos vértices opuestos más cercanos del octaedro que resulta en el interior. Estudios de Löhner y Baum aseguran que esta elección produce el menor número de tetraedros distorsionados en la malla refinada. Existen otras dos opciones para subdividir el octaedro, y se podría analizar la calidad de las divisiones, pero aumentaría el coste computacional del algoritmo. Una vez marcados los tetraedros de Tipo I, para asegurar la conformidad de la malla nos podemos encontrar con tetraedros vecinos que pueden tener 6, 5,..., 1, ó 0 nuevos nodos introducidos. Aquellos tetraedros que por razones de conformidad tengan marcadas sus 6 aristas pasa automáticamente al conjunto de tetraedros de Tipo I. 24 tetrahedra 48 tetrahedra

Meccano Method Coons patches provide a reasonable initial location in physical domain for inner nodes Segment (1D), surface (2D) and cube (3D) interpolations (a) parametric cube (b) bilinear interpolation in a rectangle

New position for the free node Meccano Method Simultaneous Untangling and Smoothing (CMAME 2003) Local optimization Objective: Improve the quality of the local mesh by minimizing an objective function Free node New position for the free node Local mesh Optimized local mesh

: Weighted Jacobian matrix Meccano Method SUS Code: Weighted Jacobian Matrix on a Plane Reference triangle Physical triangle Ideal triangle y A y y 2 S = AW -1 2 2 t tR 1 tI 1 x x 1 x W S tI t : Weighted Jacobian matrix An algebraic quality metric of t (mean ratio) where:

Meccano Method Original function: Modified function: SUS Code: Local objective function for plane triangulations Original function: Modified function: Modified function (blue) is regular in all R2 and it approximates the same minimum that the original function (red). Moreover, it allows a simultaneous untangling and smoothing of triangular meshes The extension to tetrahedral meshes is straightforward:

Meccano Method Oil field strata meshing Boundary surfaces Volume mesh

Wind Field Modeling

Wind Field Modeling Conquered challenges Local scale wind field model JWEIA(1998, 2001, 2010) Mass consistent model (MMC) provides a useful method for local scale wind studies. Local wind 3D field using data measurements. Automatic process. Few model parameters. Low computational cost due to use of adaptive tetrahedral meshes and efficient solvers. Parameter estimation LNCS(2002), AES(2005) Use of parallel GAs for parameter estimation. Integration with mesoscale models PAG (2015) Coupling with HARMONIE leads to predictive capabilities. Use of HARMONIE outputs as MMC inputs. Ensemble methods PAG (2015) Use of ensemble methods to obtain local scale wind prediction.

Wind Field Modeling Mass Consistent Wind Model : observed wind, which is obtained with horizontal interpolation and vertical extrapolation of experimental or forecasted data. Objective: find the velocity field that it adjusts to verifying - Incompressibility condition in the domain: - Impermeability condition on the terrain:

Wind Field Modeling Mass Consistent Wind Model Then, is the solution of the least-square problem: Find verifying where We can write E as follows

Wind Field Modeling Mass Consistent Wind Model Governing equations

Wind Field Modeling Mass Consistent Wind Model Construction of the observed wind Horizontal interpolation

Wind Field Modeling Mass Consistent Wind Model Construction of the observed wind Vertical extrapolation (log-linear wind profile) geostrophic wind mixing layer terrain surface

Wind Field Modeling Mass Consistent Wind Model ● Friction velocity: ● Height of the planetary boundary layer: is the Coriolis parameter, being the Earth rotation and is the latitude is a parameter depending on the atmospheric stability ● Mixing height: in neutral and unstable conditions in stable conditions ● Height of the surface layer:

Wind Field Modeling Estimation of Model Parameters FE solution is needed for each individual Genetic Algorithm

Iterative Solution of Sparse Linear Systems IChol Preconditioner for shifted linear systems Cheap strategy: IChol(Aε0) Expensive strategy: FullIChol ICholD ICholN

Iterative Solution of Sparse Linear Systems IChol Preconditioner for shifted linear systems

Wind Field Modeling Forecasting over Complex Terrain Wind3D Code (freely-available) http://www.dca.iusiani.ulpgc.es/Wind3D/ Decimos que un tetraedro es de Tipo I si está marcado con el indicador de error. Se introducen 6 nuevos nodos en el punto medio de sus aristas y se subdividen cada una de sus cuatro caras en 4 triángulos, uniendo los puntos que se han introducido. Cuatro subtetraedros quedan determinados a partir de los cuatro vértices del tetraedro original y las nuevas aristas. Los otros cuatro tetraedros se obtienen al unir los dos vértices opuestos más cercanos del octaedro que resulta en el interior. Estudios de Löhner y Baum aseguran que esta elección produce el menor número de tetraedros distorsionados en la malla refinada. Existen otras dos opciones para subdividir el octaedro, y se podría analizar la calidad de las divisiones, pero aumentaría el coste computacional del algoritmo. Una vez marcados los tetraedros de Tipo I, para asegurar la conformidad de la malla nos podemos encontrar con tetraedros vecinos que pueden tener 6, 5,..., 1, ó 0 nuevos nodos introducidos. Aquellos tetraedros que por razones de conformidad tengan marcadas sus 6 aristas pasa automáticamente al conjunto de tetraedros de Tipo I.

Wind Field Modeling HARMONIE-FEM wind forecast Terrain approximation Max height 925m Max height 1950m HARMONIE discretization of terrain Topography from Digital Terrain Model Terrain elevation (m)

Wind Field Modeling HARMONIE-FEM wind forecast Spatial discretization HARMONIE mesh Δh ~ 2.5km FEM computational mesh Terrain elevation (m)

Wind Field Modeling Data interpolation in FE domain: Problems with terrain discretization HARMONIE FD domain FE domain Possible solutions for a suitable data interpolation in the FE domain: Use U10 and V10 supposing it is 10m over the FE terrain (used in this talk) Given a point of FE domain, find the closest one in HARMONIE domain grid Other possibilities can be considered

Wind Field Modeling HARMONIE-FEM wind forecast Wind magnitude at 10m over terrain HARMONIE wind FEM wind Wind velocity (m/s)

Velocity Module - 23/12/2009 - 18:00 h Wind on the terrain surface Interpolated field from HARMONIE Resulting field with the mass consistent model

Wind Field Modeling HARMONIE-FEM wind forecast Multiple numerical predictions using slightly different conditions HARMONIE data + MMC model  local wind forecast The main idea Use HARMONIE data as reliable points, as stations or as control points for GAs Run different sets of experiments  perturbation

Wind Field Modeling HARMONIE-FEM wind forecast U10 V10 horizontal velocities Geostrophic wind = (27.3, -3.9) Pasquill stability class: Stable In order to compute our wind field we have to use some data from HARMONIE i.e. U10 V10, the Geostrophic velocity, and the Pasquill stability class HARMONIE U10 V10 data points

Wind Field Modeling HARMONIE-FEM wind forecast There’s a total of 552 points with u10 and v10 data. We don’t want to use that much, so we discard one third of the data Used data (2/3 of total)

Wind Field Modeling HARMONIE-FEM wind forecast Selection of Stations Stations Control points Stations (1/3) and control points (1/3)

Ensemble methods New Previous Alpha = 2.057920 Alpha = 2.302731 Epsilon = 0.950898 Gamma = 0.224911 Gamma' = 0.311286 Previous Alpha = 2.302731 Epsilon = 0.938761 Gamma = 0.279533 Gamma' = 0.432957 Small changes

Ensemble methods

Wind Field Modeling Air Quality Modeling Convection-diffusion-reaction equation Convective term Diffusive term Reactive term in Ω Emissión term Boundary Conditions Initial Condition c = concentration cemi = stack concentration cini = initial concentration u = wind velocity K = diffusion matrix e = emissión s(c) = reactive term Vd = deposition velocity