STAR Physics Program at RHIC Nu Xu Nuclear Science Division Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

Slides:



Advertisements
Similar presentations
Mass, Quark-number, Energy Dependence of v 2 and v 4 in Relativistic Nucleus- Nucleus Collisions Yan Lu University of Science and Technology of China Many.
Advertisements

Explore QCD Emerging Property
The Physics of HFT the Heavy Flavor Tracker at STAR Spiros Margetis Kent State University, USA Excited QCD 2010.
The Heavy Flavor Tracker (HFT) The Silicon Vertex Upgrade of RHIC Spiros Margetis Kent State University, USA Excited QCD 2010, Slovakia.
First Alice Physics Week, Erice, Dec 4  9, Heavy  Flavor (c,b) Collectivity at RHIC and LHC Kai Schweda, University of Heidelberg A. Dainese,
ISMD’05, Kromeriz, Aug 09  15, Heavy  Flavor (c,b) Collectivity – Light  Flavor (u,d,s) Thermalization at RHIC Kai Schweda, University of Heidelberg.
Nu Xu1/32“Critical Point and Onset of De-confinement”, August, 2010, JINR, Dubna High-Energy Nuclear Collisions and the QCD Phase Structure Nu Xu.
Identified particle transverse momentum distributions in 200 GeV Au+Au collisions at RHIC 刘海东 中国科技大学.
Heavy Quark Probes of QCD Matter at RHIC Huan Zhong Huang University of California at Los Angeles ICHEP-2004 Beijing, 2004.
Forward-Backward Correlations in Relativistic Heavy Ion Collisions Aaron Swindell, Morehouse College REU 2006: Cyclotron Institute, Texas A&M University.
Physics of High Baryon Density,Trento, May 29  June 2, Charm with STAR Kai Schweda, University of Heidelberg A. Dainese, X. Dong, J. Faivre, Y.
Relativistic Heavy-Ion Collisions: Recent Results from RHIC David Hardtke LBNL.
DNP03, Tucson, Oct 29, Kai Schweda Lawrence Berkeley National Laboratory for the STAR collaboration Hadron Yields, Hadrochemistry, and Hadronization.
Nu XuInternational Conference on Strangeness in Quark Matter, UCLA, March , 20061/20 Search for Partonic EoS in High-Energy Nuclear Collisions Nu.
Heavy Ion Physics in Future -- Dense Matter Physics & Critical Point Search Nu Xu Nuclear Science Division Lawrence Berkeley National Laboratory Many Thanks.
DPG spring meeting, Tübingen, March Kai Schweda Lawrence Berkeley National Laboratory for the STAR collaboration Recent results from STAR at RHIC.
Nu Xu1/17STAR Regional Meeting, Warsaw University of Technology, November 5 th, 2012, Warsaw STAR November 5, 2012 Status of STAR Experiment at RHIC Study.
QCD Phase Boundary and the Critical Point B. Mohanty (1), X.F. Luo (2,3), H.G. Ritter (3) and N. Xu (3) (1)VECC, Kolkata, , India (2)Modern Physics.
ICPAQGP 2010, Goa, India High-Energy Nuclear Collisions and QCD Phase Structure Nu Xu (1) Nuclear Science Division, Lawrence Berkeley National Laboratory,
Christina Markert Physics Workshop UT Austin November Christina Markert The ‘Little Bang in the Laboratory’ – Accelorator Physics. Big Bang Quarks.
Frontiers of Nuclear Physics A Personal Outlook Huan Zhong Huang Department of Physics and Astronomy University of California, Los Angeles Department of.
Nu Xu1/17 24 th CBM Collaboration Meeting, Krakow, Poland, September 8 – 12, 2014 Study the QCD Phase Structure at the High Baryon Density Nu Xu (1,2)
ISMD31 / Sept. 4, 2001 Toru Sugitate / Hiroshima Univ. The 31 st International Symposium on Multiparticle Dynamics on 1-7, Sept in Datong, China.
Strange and Charm Probes of Hadronization of Bulk Matter at RHIC International Symposium on Multi-Particle Dynamics Aug 9-15, 2005 Huan Zhong Huang University.
Nu Xu1/28VIII International Workshop on Relativistic Aspects of Nuclear Physics, Rio de Janeiro, Brazil, 3-6, November, 2008 Explore the QCD Phase Diagram.
Nu Xu1/15 STAR Collaboration Meeting, BNL, February 24 – March 1, 2013 February 27, 2013 Status of STAR - A report to the Council Nu Xu.
Nu Xu1/12 ”DNP“, Newport Beach, California, December , 2012 Energy Dependence of the High Moments from Transport Model Simulations Xiaofeng Luo.
Partonic Collectivity at RHIC ShuSu Shi for the STAR collaboration Lawrence Berkeley National Laboratory Central China Normal University.
Nu Xu1/20 ”ATHIC2012“, Pusan, Korea, November , 2012 QCD in the Twenty-First Century (1)Higgs (-like) Particle – - Origin of Mass, QCD dof - Standard.
Nu Xu1/30 Explore the QCD Phase Diagram Nu Xu Lawrence Berkeley National Laboratory Many Thanks to the Organizers ATHIC 2008, Tsukuba, Japan, Oct. 13 -
Nu Xu1/17STAR Decadal Plan Meeting at UIC, September 10 th, 2010 STAR Experiment: Status & Future - Spin Structure of Proton - Properties of QCD Matter.
Nu Xu1/28 Fluctuations, Correlations and RHIC Low Energy Runs, BNL, October 3 – 5, 2011 STAR Study QCD Phase Structure in STAR Experiment Nu Xu (1) Nuclear.
Nu Xu1/16STAR Collaboration Meeting, Nov. 12 – 17, 2010, BNL, USA STAR Experiment at RHIC: - Physics Programs - Management Issues Nu Xu.
Higher moments of net-charge multiplicity distributions at RHIC energies in STAR Nihar R. Sahoo, VECC, India (for the STAR collaboration) 1 Nihar R. Sahoo,
Study of the QCD Phase Structure through High Energy Heavy Ion Collisions Bedanga Mohanty National Institute of Science Education and Research (NISER)
Nu Xu1/33Nuclear Physics Seminar, LANL, October 21, 2009 STAR Experiment STAR Physics Program Nu Xu Lawrence Berkeley National Laboratory.
STAR Physics Program with the TOF Nu Xu for the STAR Collaboration Nuclear Science Division Lawrence Berkeley National Laboratory.
Summer Student Practice, Dubna, 2009 Analysis of UrQMD Data Obtained for Relativistic Au+Au Collisions at 17.3 GeV for STAR detector F. Nemulodi, M.W.
Future Perspectives on Theory at RBRC Color Glass Condensate: predictions for: "ridge", elliptical flow.... Quark-Gluon Plasma: fluctuations, effects of.
Nu Xu1/35 RNC Meeting, Berkeley, February 21, 2012 Beam Energy Scan at RHIC - A status report from STAR Nu Xu (1) Nuclear Science Division, Lawrence Berkeley.
Energy Dependence of ϕ -meson Production and Elliptic Flow in Au+Au Collisions at STAR Md. Nasim (for the STAR collaboration) NISER, Bhubaneswar, India.
Hadron Collider Physics 2012, 12/Nov/2012, KyotoShinIchi Esumi, Univ. of Tsukuba1 Heavy Ion results from RHIC-BNL ShinIchi Esumi Univ. of Tsukuba Contents.
CCAST, Beijing, China, 2004 Nu Xu //Talk/2004/07USTC04/NXU_USTC_8July04// 1 / 26 Collective Expansion in Relativistic Heavy Ion Collisions -- Search for.
HIRSCHEGG, January , 2005 Nu Xu //Talk/2005/01Hirschegg05// 1 / 24 Search for Partonic EoS in High-Energy Collisions Nu Xu Lawrence Berkeley National.
Nu Xu1/18STAR Decadal Plan Meeting at UIC, September 10 th, 2010 High-Energy Nuclear Collisions and QCD Phase Structure What is the phase structure of.
John Harris (Yale) LHC Conference, Vienna, Austria, 15 July 2004 Heavy Ions - Phenomenology and Status LHC Introduction to Rel. Heavy Ion Physics The Relativistic.
Nu Xu1/27International Symposium on Heavy Ion Physics, 17-20, November, 2008 Recent Results from the STAR Experiment at RHIC Nu Xu Lawrence Berkeley National.
Search for QCD Critical Point at RHIC Bedanga Mohanty National Institute of Science Education and Research (NISER) Outline:  Phase diagram of QCD  Observables.
The Heavy Flavor Tracker (HFT) The Silicon Vertex Upgrade of RHIC Jaiby Joseph* for the STAR Collaboration * Kent State University, USA Lake Louise.
Nu XuDirector’s Review, LBNL, May 17, 20061/23 Future Program for Studying Bulk Properties in High-Energy Nuclear Collisions Nu Xu.
X. DongAug , 2014 TPD RBRC Workshop, BNL Dielectron Mass Spectrum & Elliptic Flow at Au+Au 200 GeV Xin Dong Lawrence Berkeley National Laboratory.
Nu Xu1/20STAR Regional Meeting, VECC, India, November, 2008 STAR Experiment STAR at RHIC Nu Xu Lawrence Berkeley National Laboratory.
Nu Xu RPM, March 23, Recent Results from STAR at RHIC (with focus on bulk properties) Nu Xu Nuclear Science Division.
X. Dong Nov. 27th, 2012 Director’s Review STAR RNC Xin Dong Nuclear Science Division / LBNL 1) QCD in cold nuclear matter 2) QCD in hot nuclear.
Nu Xu1/26 ”The 20 th CBM Collaboration Meeting“, Kolkata, India, September 24 – 28, 2012 Results from RHIC Beam Energy Scan-I Nu Xu (1,2) Outline: 1) Introduction.
Quantitative Comparison of Viscous Hydro with Data What is needed to make progress: the STAR-flavored view Nu Xu (for STAR Collaboration) Nuclear Science.
Nu Xu1/7STAR Analysis Meeting, Junior Meeting, April 16 th, 2012, BNL STAR STAR Experiment Nu Xu - Introduction: Structure of the QCD Matter - Near future.
Nu Xu STAR Regional Meeting, NISER, BHUBANESWAR, India, February , /25 Future Direction?! Nu Xu (1,2) (1) College of Physical Science & Technology,
STAR Physics Program Nu Xu Nuclear Science Division Lawrence Berkeley National Laboratory Many thanks to the organizers: Z.T. Liang, Q.H. Xu, P. Zhuang.
Nu Xu“Hot and Dense Matter in the RHIC-LHC Era”, Mumbai, India, February 12-14, 20081/27 Many Thanks to the Conference Organizers Partonic EoS at RHIC.
Department of Physics, Oregon University, 7 October, 2004 Nu Xu //Nxu/tex3/TALK/2004/10OU 1 The `Big Bang’ in the Laboratory -- The Physics of High-energy.
Nu Xu1/36 International School of Nuclear Physics, 30 th Course, Erice-Sicily, September 2008 Explore the QCD Phase Diagram - Partonic Equation.
Observation of antimatter hypernuclei at RHIC Jinhui Chen Kent State University for the STAR Collaboration 10 th International Conference on Hypernuclear.
Nu Xu1/23 Seminar, USTC, Modern Physics Department, October 16, 2014 Study the QCD Phase Structure in High-Energy Nuclear Collisions Nu Xu (1,2) Outline:
Non-Prompt J/ψ Measurements at STAR Zaochen Ye for the STAR Collaboration University of Illinois at Chicago The STAR Collaboration:
Chiral Magnet Effect, where are we?
The Heavy Flavor Tracker (HFT)
Physics of the Heavy Flavor Tracker at STAR Nu Xu Nuclear Science Division Lawrence Berkeley National Laboratory Nu Xu.
Strangeness in Collisions, BNL, February , 2006
Presentation transcript:

STAR Physics Program at RHIC Nu Xu Nuclear Science Division Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Nu Xu2/33Warsaw University of Technology, October 26, 2009 Basics on Quantum Chromodynamics 1)Quantum Chromodynamics (QCD) is the established theory of strongly interacting matter. 2)Gluons hold quarks together to from hadrons: 3)Gluons and quarks, or partons, typically exist in a color singlet state: confinement. baryonmeson

Nu Xu3/33Warsaw University of Technology, October 26, 2009 nuclei hadron gas CSC quark-gluon plasma TcTc Baryon Chemical Potential Critical Point? Temperature Early Universe Density Frontier T E RHIC, FAIR 1 Energy Frontier T C LHC, RHIC 3 Baryon Density 1 st order p.b. FAIR, NICA, CSR High-Energy Nuclear Collisions

Nu Xu4/33Warsaw University of Technology, October 26, 2009 QCD Thermodynamics SB Ideal Gas RHICLHC 1)At μ B = 0: cross over, 150 < T c < 200 MeV 2)The SB ideal gas limit: T/T c ~ )T ini (LHC) ~ 2-3*T ini (RHIC) 4)Thermodynamic evolutions are similar for RHIC and LHC* Zoltan Fodor, Lattice 2007

Nu Xu5/33Warsaw University of Technology, October 26, 2009 STAR Physics Focus 1) At 200 GeV top energy - Study medium properties, EoS - pQCD in hot and dense medium 2) RHIC beam energy scan - Search for the QCD critical point - Chiral symmetry restoration Polarized p+p program - Study proton intrinsic properties Forward program - Study low-x properties, search for CGC - Study elastic (inelastic) processes (pp2pp) - Investigate gluonic exchanges Structure of Nucleon Structure of Cold Nuclear Matter Structure of Hot/Dense Matter Matter with partonic degrees of freedom. Theory of QCD.

Nu Xu6/33Warsaw University of Technology, October 26, 2009 Student Lecture, “Quark Matter 2006”, Shanghai, Nov , 2006 RHIC BRAHMS PHOBOS PHENIX STAR AGS TANDEMS Relativistic Heavy Ion Collider (RHIC) Brookhaven National Laboratory (BNL), Upton, NY v =  c = 186,000 miles/sec Au + Au at 200 GeV Animation M. Lisa

Nu Xu7/33Warsaw University of Technology, October 26, 2009

Nu Xu8/33Warsaw University of Technology, October 26, 2009 STAR Detectors

Nu Xu9/33Warsaw University of Technology, October 26, 2009 HFT TPC FGT STAR Detectors: Full 2π particle identification! EMC+EEMC+FMS (-1 ≤  ≤ 4) TOF DAQ1000 HLT

Nu Xu10/33Warsaw University of Technology, October 26, 2009 STAR Experiment

Nu Xu11/33Warsaw University of Technology, October 26, 2009 Outline 1) Spin program 2) Heavy-Ion program -Recent results -Beam scan program 3) Future upgrade programs

Nu Xu12/33Warsaw University of Technology, October 26, 2009 High-Energy Nuclear Collisions

Nu Xu13/33Warsaw University of Technology, October 26, 2009 Search for Local Parity Violation in High Energy Nuclear Collisions Topological transitions have never been observed directly (e.g. at the level of quarks in DIS). An observation of the spontaneous strong, local parity violation would be a clear proof for the existence of the physics. Chiral Magnetic Effect: Kharzeev, PL B (06). Kharzeev, et al, NP A797 67(07). Kharzeev, et al, NP A (08). Fukushima, et al, PRD78, (08). Animation by Derek Leinweber

Nu Xu14/33Warsaw University of Technology, October 26, 2009 Search for Local Parity Violation in High Energy Nuclear Collisions The separation between the same-charge and opposite- charge correlations. - Strong external EM field - De-confinement and Chiral symmetry restoration L or B Voloshin, PR C62, (00). STAR; arXiv: (PRL); (PRC). Parity even observable

Nu Xu15/33Warsaw University of Technology, October 26, 2009 y x pypy pxpx coordinate-space-anisotropy  momentum-space-anisotropy Anisotropy Parameter v 2 Initial/final conditions, EoS, degrees of freedom

Nu Xu16/33Warsaw University of Technology, October 26, 2009 Low p T (≤ 2 GeV/c): hydrodynamic mass ordering High p T (> 2 GeV/c): number of quarks ordering => Collectivity developed at partonic stage! => De-confinement in Au+Au collisions at RHIC! Partonic Collectivity at RHIC STAR: preliminary QM PHENIX: nucl-ex/

Nu Xu17/33Warsaw University of Technology, October 26, 2009 Collectivity, De-confinement at RHIC - v 2 of light hadrons and multi-strange hadrons - scaling by the number of quarks At RHIC:  n q -scaling novel hadronization process êPartonic flow De-confinement PHENIX: PRL91, (03) STAR: PRL92, (04), 95, (05) nucl-ex/ , QM05 S. Voloshin, NPA715, 379(03) Models: Greco et al, PRC68, (03) Chen, Ko, nucl-th/ Nonaka et al. PLB583, 73(04) X. Dong, et al., Phys. Lett. B597, 328(04). …. i ii

Nu Xu18/33Warsaw University of Technology, October 26, 2009 First Observation of STAR Preliminary First observation of an anti-hypernucleus To be submitted to Science magazine 200 GeV Au+Au collisions at RHIC

Nu Xu19/33Warsaw University of Technology, October 26, 2009 sQGP and the QCD Phase Diagram In 200 GeV Au+Au collisions at RHIC, strongly interacting matter formed: - Jet energy loss: R AA - Strong collectivity: v 0, v 1, v 2 - Hadronization via coalescence: n q -scaling Questions: Is thermalization reached at RHIC? - Systematic analysis with dN/dp T and dv 2 /dp T results… - Heavy quark and di-lepton measurements When (at which energy) does this transition happen? What does the QCD phase diagram look like? - RHIC beam energy scan

Nu Xu20/33Warsaw University of Technology, October 26, 2009 Run10 Physics Programs RHIC cool down early Dec. STAR shift starts Dec. 15 th Beam Energy (GeV) 25 cryo- week 30 cryo- week 20 cryo- week CR Physics Thermalization J/Ψ v 2, m ee BES programs, T E, phase boundary

Nu Xu21/33Warsaw University of Technology, October 26, 2009 Observables for QCD Critical Point Event by Event: 1) The net-proton Kurtosis K p (E) 2) Two proton correlation functions C 2 (E) 3) Ratio of the d/p 4) Ratio of K/p M. Cheng et al., PRD79, (09);arXiv: F. Karsch, INT, 08; M. A. Stephanov, PRL102, (09)

Nu Xu22/33Warsaw University of Technology, October 26, 2009 Higher Moments Analysis (BES) STAR Preliminary, QM09 1)Higher moments are more sensitive to QCD critical point related fluctuation. 2)The 4 th moment, Kurtosis, is directly related to the corresponding thermodynamic quantity: susceptibility of conserved quantum numbers such as Baryon number and strangeness.

Nu Xu23/33Warsaw University of Technology, October 26, 2009 Observable: Quark Scaling - m  ~ m p ~ 1 GeV - ss   not K + K -   -   h <<  p ,  In the hadronic case, absence of n q -scaling and the value of v 2 of  will be small or zero.  

Nu Xu24/33Warsaw University of Technology, October 26, 2009 Future Upgrades

Nu Xu25/33Warsaw University of Technology, October 26, 2009 STAR DetectorMRPC ToF barrel 100% ready for run 10 BBC PMD FPD FMSFMS EMC barrel EMC End Cap DAQ1000 FGT Completed Ongoing MTD R&D HFT TPC FHC HLT

Nu Xu26/33Warsaw University of Technology, October 26, 2009 Particle Identification at STAR STAR TPC STAR ToF STAR EMC STAR HFT Neutral particles Strange Jets Heavy Quark hyperons Hadrons Multiple-fold correlations among the identified particles! e, μ π K p d TPC ToF TPC Log 10 (p)

Nu Xu27/33Warsaw University of Technology, October 26, 2009 STAR High Level Trigger Run9 p+p 200 GeV, May J/ψ 1)Fast filtering for quick data analysis. Run10: try J/ψ v 2 2)Online QA

Nu Xu28/33Warsaw University of Technology, October 26, 2009 The di-Lepton Program at STAR (1) σ, m (2) v 2 (3) R AA m ee (GeV) p T (GeV/c) ρ ϕ J/ψ DY, charm Bk Chiral Symmetry Restoration Direct Radiation from The Hot/Dense Medium * ToF Crucial for the physics. PHENIX:

Nu Xu29/33Warsaw University of Technology, October 26, 2009 Direct Radiation Expanding partonic matter at RHIC and LHC! Di-leptons allow us to measure the direct radiation from the matter with partonic degrees of freedom, no hadronization! - Low mass region: , ,   e - e + m inv  e - e + medium effect Chiral symmetry - High mass region: J/   e - e + m inv  e - e + Direct radiation

Nu Xu30/33Warsaw University of Technology, October 26, 2009 STAR: Muon Telescope Detector (2012) Muon Telescope Detector at STAR: 1)MRPC technology; μ ε ~ 45%; cover ~60% azimuthally and |y| < )TPC+TOF+MTD: muon/hadron enhancement factor ~ )For trigger and heavy quarkonium measurements 4)China-STAR collaboration: proposal reviewed in the collaboration TPCbeam pipeTOFEMCMTDmagnet

Nu Xu31/33Warsaw University of Technology, October 26, 2009 STAR Heavy Flavor Tracker (2014) HFT: ) Two-layer thin CMOS pixels; one-layer strips; SSD 2) First layer at 2.5 cm from beam pipe, 2pi coverage 3) Resolution~20μm  Measure down to low p T ~ 0.5 GeV/c for open charm hadrons

Nu Xu32/33Warsaw University of Technology, October 26, 2009 HFT: Charm Hadron v 2 and R AA GeV Au+Au m.b. collisions (500M events). - Charm hadron collectivity  drag/diffusion constants  Medium properties! GeV Au+Au m.b. collisions (|y|< M events) - Charm hadron R AA  - Energy loss mechanism! - QCD in dense medium!

Nu Xu33/33Warsaw University of Technology, October 26, 2009 Next Decade: STAR QCD Physics Program Spin Physics: GeV: Δg inclusive and di-jets, γ-jet GeV: sea quark helicity distributions - 200/500 GeV: transverse spin phenomena Low-x Physics: - Study gluon-rich phenomena at RHIC - Color glass condensate Heavy Ion Physics: - Thermalization at 200 GeV; direct gamma, m ee - QCD phase boundary, critical point - In medium properties(?)