3.1 Radian Measure OBJ: Convert degree measure to radian measure Find trig values of angles expressed in radian measure.

Slides:



Advertisements
Similar presentations
Trigonometric Identities
Advertisements

Trigonometry Review Find sin(  /4) = cos(  /4) = tan(  /4) = Find sin(  /4) = cos(  /4) = tan(  /4) = csc(  /4) = sec(  /4) = cot(  /4) = csc(
Trig Graphs. y = sin x y = cos x y = tan x y = sin x + 2.
1 Special Angle Values DEGREES. 2 Directions A slide will appear showing a trig function with a special angle. Say the value aloud before the computer.
Write the following trigonometric expression in terms of sine and cosine, and then simplify: sin x cot x Select the correct answer:
Evaluating Sine & Cosine and and Tangent (Section 7.4)
Day 2 and Day 3 notes. 1.4 Definition of the Trigonometric Functions OBJ:  Evaluate trigonometric expressions involving quadrantal angles OBJ:  Find.
Day 3 Notes. 1.4 Definition of the Trigonometric Functions OBJ:  Evaluate trigonometric expressions involving quadrantal angles OBJ:  Find the angle.
1.5 Using the Definitions of the Trigonometric Functions OBJ: Give the signs of the six trigonometric functions for a given angle OBJ: Identify the quadrant.
Section 5.2 Trigonometric Functions of Real Numbers Objectives: Compute trig functions given the terminal point of a real number. State and apply the reciprocal.
By: Alvin Nguyen. Unit Circle Jeopardy ConversionsRotation AnglesReference Angles Trig FunctionsWord Problems
Trigonometry/Precalculus ( R )
13.1 Assignment C – even answers 18. sin = 4/1334. B = 53 o cos = a = tan = b = cot = sec = 38. A = 34 o csc = 13/4 b = c =
Sum and Difference Formulas Section 5.4. Exploration:  Are the following functions equal? a) Y = Cos (x + 2)b) Y = Cos x + Cos 2 How can we determine.
Trigonometry #1 Distance Formula, (Degrees,Minutes,Seconds), Coterminal Angles, Trig Function Values.
Circular Trigonometric Functions.
Trigonometry Review. Angle Measurement To convert from degrees to radians, multiply byTo convert from radians to degrees, multiply by radians, so radians.
1 7.3 Evaluating Trig Functions of Acute Angles In this section, we will study the following topics: Evaluating trig functions of acute angles using right.
7.5 Values of Trig Functions. Trig Values for Non-special Angles Use calculator to find value & round to 4 digits * make sure calc is in DEG mode * angle.
3.7 Evaluating Trig Functions
2.5 Properties of the Trig Functions
Reciprocal Trig Functions Section The Reciprocal Functions  cosecant (csc θ)=  secant (sec θ)=  cotangent (cot θ)=
Trigonometry Jeopardy Radians Degrees Misc Trig Misc.
4.2 Trigonometric Function: The Unit circle. The Unit Circle A circle with radius of 1 Equation x 2 + y 2 = 1.
5.1 Trigonometric Functions of Acute Angles Fri Oct 17 Do Now Solve for x 1) 1^2 + x^2 = 2^2 2) x^2 + x^2 = 1.
10.4A Polar Equations Rectangular: P (x, y) Polar: P (r,  )  r = radius (distance from origin)   = angle (radians)
Find the reference angle
Trigonometry Review Game. Do not use a calculator on any of these questions until specified otherwise.
6.2: Right angle trigonometry
3.1 Radian Measure OBJ: Convert degree measure to radian measure Find trig values of angles expressed in radian measure.
13.2 – Define General Angles and Use Radian Measure.
TOP 10 Missed Mid-Unit Quiz Questions. Use the given function values and trigonometric identities to find the indicated trig functions. Cot and Cos 1.Csc.
Sec 6.2 Trigonometry of Right Triangles Objectives: To define and use the six trigonometric functions as ratios of sides of right triangles. To review.
1.4 Definition of the Trigonometric Functions OBJ:  Find the values of the six trigonometric functions of an angle in standard position.
Practice Degree ____ Radian _____ (, ) I I III IV Degree ____ Radian _____ (, ) Degree ____ Radian _____ (, ) Degree ____ Radian _____ (, )
14.2 The Circular Functions
_______º _______ rad _______º ________ rad ­­­­ _______º _______ rad _______º _______ rad ­­­­ _______º _______ rad ______º _______ rad Unit Circle use.
Conversion of Radians and Degrees Degree Radian Radians Degrees Example 1Converting from Degrees to Radians [A] 60° [B] 30° Example 2Converting from Radians.
Trig Review. 1.Sketch the graph of f(x) = e x. 2.Sketch the graph of g(x) = ln x.
Section 1.4 Trigonometric Functions an ANY Angle Evaluate trig functions of any angle Use reference angles to evaluate trig functions.
Pg. 362 Homework Pg. 362#56 – 60 Pg. 335#29 – 44, 49, 50 Memorize all identities and angles, etc!! #40
Objective: use the Unit Circle instead of a calculator to evaluating trig functions How is the Unit Circle used in place of a calculator?
4.3 Trigonometry Extended: The Circular Functions
4.2 Trig Functions of Acute Angles. Trig Functions Adjacent Opposite Hypotenuse A B C Sine (θ) = sin = Cosine (θ ) = cos = Tangent (θ) = tan = Cosecant.
Describe the vertical shift in the graph of y = -2sin3x + 4. A.) Up 2 B.) Down 2 C.) Up 4 D.) Down 4.
Important Angles.
Section 7.2 Addition and Subtraction Formulas Objectives: To understand how to apply the addition and subtraction formulas.
Trigonometry Section 4.2 Trigonometric Functions: The Unit Circle.
Trigonometry Section 8.4 Simplify trigonometric expressions Reciprocal Relationships sin Θ = cos Θ = tan Θ = csc Θ = sec Θ = cot Θ = Ratio Relationships.
4.3 Right Triangle Trigonometry Objective: In this lesson you will learn how to evaluate trigonometric functions of acute angles and how to use the fundamental.
Pythagorean Identities Unit 5F Day 2. Do Now Simplify the trigonometric expression: cot θ sin θ.
Trigonometric Ratios of Any Angle
Reviewing Trigonometry Angle Measure Quadrant Express as a function of a positive acute angle Evaluate Find the angle Mixed Problems.
Trig Functions – Part Pythagorean Theorem & Basic Trig Functions Reciprocal Identities & Special Values Practice Problems.
Trigonometry Review.
Trigonometric Function: The Unit circle
Unit 8 The Unit Circle!.
7.2 – Trigonometric Integrals
Trig Functions: the unit circle approach
Warm – Up: 2/4 Convert from radians to degrees.
Trigonometric Function: The Unit circle
47.75⁰ Convert to radians: 230⁰.
Unit 7B Review.
Using Fundamental Identities
Intro to trig review.
Sec 6.2 Trigonometry of Right Triangles
19. More Solving Equations
Review for test Front side ( Side with name) : Odds only Back side: 1-17 odd, and 27.
5-3 The Unit Circle.
Quick Integral Speed Quiz.
Presentation transcript:

3.1 Radian Measure OBJ: Convert degree measure to radian measure Find trig values of angles expressed in radian measure

P 19 EX3a:  Convert 74  8 14  to decimal degrees (Unit 5 p 1) 74  8 14  = 

P22:30 Convert to Dec. Deg.(HW 5.1) 165   = 

P22: 36 Convert to DMS (HW 5.1) =  

DEF:  Converting Between  ‘s and Radians Convert to degrees  (  = 3.14)  (2  = 6.28) (180°-360°) Convert to radians 29  40  (30° =  ) 180  (3.14/6=.523 ) °  (60=  /3= 180  (90=  /2=1.57) 2. Formula: FromToMultiply By RadiansDegrees 180   DegreesRadians  180 

EX:  Find sin (74  8 14  )(Unit 5p1) sin (  ).962 sin 0 0 sin 30.5 sin sin 90 1 sin sin (sin166).25 sin 180 0

EX:Find csc(165  5109  )(Unit5p1) 1_______ sin (  ) csc 0 Ø csc 30 2 csc csc 90 1 csc csc (sin 166 =.25 or  ) csc 180 Ø

cos.514 cos cos  3.14 = cos 30°.87

cot /tan(1.3206).256

P80: 32) sin  =.2784 (HW 5.1) sin  =.2784 sin -1 sin  = sin  = sin -1 (.2784)  sin 0 0 sin 30.5

P80: 34) cot  = (HW 5.1) cot  = tan  = tan -1 tan  = tan  = tan -1 ( 1__ 1.257) º

cos s =.0581 sec s = cos s =.0581 cos -1 cos s = cos s = cos -1 (.0581) (3.14/2 = 1.571) Degree Measure cos -1 (0) 90 (90 =  /2 = 3.14/2) sec s = cos -1 cos s =cos -1 1/ s = cos -1 (1/2.1234) 1.080