NEI Modeling What do we have? What do we need? 2012.08.09 AtomDB workshop Hiroya Yamaguchi (CfA) Fe ion population in CIE (AtomDB v.2.0.2) Temperature.

Slides:



Advertisements
Similar presentations
Charge Exchange Models for X-ray Spectroscopy with AtomDB v2.0 Randall Smith, Adam Foster & Nancy Brickhouse Smithsonian Astrophysical Observatory.
Advertisements

Selected Problems Tutorial # 3
Q u a n t u m N u m b e r s M r B o h r w a n t s t o k n o w.
Suzaku Discovery of Fe K-Shell Line from the O-rich SNR G Arxiv: Fumiyoshi Kamitukasa et al.
The synthetic emission spectra for the electron non-thermal distributions by using CHIANTI Elena Dzifčáková Department of Astronomy, Physics of the Earth.
Strange Galactic Supernova Remnants G (the Tornado) & G in X-rays Anant Tanna Physics IV 2007 Supervisor: Prof. Bryan Gaensler.
RX J alias Vela Jr. The Remnant of the Nearest Historical Supernova : Impacting on the Present Day Climate? Bernd Aschenbach Vaterstetten, Germany.
Rie Yoshii ( RIKEN/Tokyo Univ. of Science) すざくで観測した N103B Observation of N103B by Suzaku 〜 together with SNR and SNR (type Ia SNRs.
Non-Equilibrium Ionization Modeling of the Current Sheet in a Simulated Solar Eruption Chengcai Shen Co-authors: K. K. Reeves, J. C. Raymond, N. A. Murphy,
High Resolution X-ray Spectroscopy of SN 1006 X-ray Diagnostics of Astrophysical Plasmas Jacco Vink (SRON Nat. Inst. for Space Research) Cambridge Ma,
Astrophysical Priorities for Accurate X-ray Spectroscopic Diagnostics Nancy S. Brickhouse Harvard-Smithsonian Center for Astrophysics In Collaboration.
High Accuracy Atomic Physics in Astronomy ITAMP 2006 K-Shell Absorption and Emission Calculations Tom Gorczyca Western Michigan University X-Ray Photoabsorption.
Iron K Spectra from L-Shell Ions in Photoionized Plasmas Work in Progress Duane Liedahl Physics and Advanced Technologies Lawrence Livermore National Laboratory.
March 11-13, 2002 Astro-E2 SWG 1 John P. Hughes Rutgers University Some Possible Astro-E2 Studies of Supernova Remnants.
Photoionization Modeling: the K Lines and Edges of Iron P. Palmeri (UMH-Belgium) T. Kallman (GSFC/NASA-USA) C. Mendoza & M. Bautista (IVIC-Venezuela) J.
XDAP 2004 XDAP 2004 Production and Decay of Atomic Inner-Shell Vacancy States Tom Gorczyca Western Michigan University Inner-Shell Photoabsorption: Inner-Shell.
An X-ray Study of the Bright Supernova Remnant G with XMM-Newton SNRs and PWNe in the Chandra Era Boston, MA – July 8 th, 2009 Daniel Castro,
The Schrödinger Model and the Periodic Table. Elementnℓms H He Li Be B C N O F Ne.
Tycho’s SNR SNR G "To make an apple pie from scratch, you must first invent the universe." ~Carl Sagan.
Chapter 7 Ionic & Metallic Bonding Anything in black letters = write it in your notes (‘knowts’)
The Hot Plasma in the Galactic Center with Suzaku Masayoshi Nobukawa, Yoshiaki Hyodo, Katsuji Koyama, Takeshi Tsuru, Hironori Matsumoto (Kyoto Univ.)
1 Diagnostics of thermal plasma with eV-level Resolution Manabu ISHIDA Tokyo Metropolitan University.
Operated by the Los Alamos National Security, LLC for the DOE/NNSA Distorted-wave cross sections of electron- impact excitation and ionization for heavy-
Spectral modeling of cosmic atomic plasmas Jelle S. Kaastra SRON.
Please do not write on this document. Thank you. Atomic Radius Data Element Name Atomic Number Atomic Radius (pm) Height of Straws (cm) H He
The Quantum Model of the Atom What atoms really look like. (We Think?)
The Current Atomic Model
Geochemical data. All electromagnetic waves travel at the speed of light (3 x 10 8 ms -1 ) and are discussed in terms of wavelength and frequency The.
The Influence of the Return Current and the Electron Beam on the X-Ray Flare Spectra Elena Dzifčáková, Marian Karlický Astronomical Institute of the Academy.
Peter Young* George Mason University, VA Uri Feldman Artep Inc, MD *Work funded by NSF and NASA.
Suzaku Study of X-ray Emission from the Molecular Clouds in the Galactic Center M. Nobukawa, S. G. Ryu, S. Nakashima, T. G. Tsuru, K. Koyama (Kyoto Univ.),
Diagnostics of non-thermal n-distribution Kulinová, A. AÚ AVČR, Ondřejov, ČR FMFI UK, Bratislava, SR.
Atomic Physics Explains the Universe Randall Smith Smithsonian Astrophysical Observatory.
New Scenario of Plasma Evolution in SNRs NEI describes the plasma evolution in standard SNRs (shell-like ): Ionizing Plasma (IP) CIE Colisional Ionization.
Charge Exchange in Cygnus Loop R. S. Cumbee et al Satoru Katsuda et al Zhang Ningxiao.
Atomic Data Needs for X-ray Analysis and AtomDB v2.0 Randall Smith Smithsonian Astrophysical Observatory.
Classification of SN Progenitors Optical obs of SNe Classification is relatively straightforward - Spectrum (historically well established) - Luminosity.
Emission II: Collisional Plasmas Randall K. Smith Chandra X-ray Center.
Atomic Physics for X-ray Astronomy: A Primer
High Energy Sky with Advancing Technology The Galactic Center View From Tenma--Suzaku Hakucho (1979)96 kg Tenma (1983) 216kg Ginga ( 1987 ) 420 kg ASCA.
Emission I: Atomic Physics for X-ray Astronomy Randall K. Smith Johns Hopkins University NASA/GSFC.
Lewis Electron Dot Diagrams. Valence Electrons Electrons found in the outermost energy level of an atom Usually involved in chemical changes Lewis Electron.
Discovery of K  lines of neutral sulfur, argon, and calcium atoms from the Galactic Center Masayoshi Nobukawa, Katsuji Koyama, Takeshi Go Tsuru, Syukyo.
ADAS workshop, Auburn University1 Generalised collisional-radiative modelling for Silicon and beyond Alessandra Giunta.
Atomic data: state of the art and future perspectives Jelle Kaastra with Ton Raassen, Liyi Gu, Junjie Mao, Igone Urdampilleta, Missagh Mehdipour SRON &
(1) Soft X-rays : Thermal Plasma (SN1006) (2) Hard X-rays: Non-thermal (SN 1006, RCW 86) (3) Mysterious 6.4 keV line (RCW 86, GC) Reports of the Suzaku.
Nucleosynthesis and formation of the elements. Cosmic abundance of the elements Mass number.
Image: Toward high-resolved hydrodynamic Simulations of Supernova remnants such as Cas A, Tycho.. Masaomi Ono.
Distinguishing Among Atoms
Discovery of K  lines of neutral S, Ar, Ca, Cr, & Mn atoms from the Galactic center with Suzaku Masayoshi Nobukawa, Katsuji Koyama, Takeshi Go Tsuru,
The 2p-3d Electron Transition Multiplet of Ar +13 : A Stellar Density Diagnostic Laura Heeter Kristina Naranjo-Rivera
Evolution of Newly Formed Dust in Population III Supernova Remnants and Its Impact on the Elemental Composition of Population II.5 Stars Takaya Nozawa.
Simulation of CHANDRA X-Ray Spectral Observations of  Pup (O4 If) J. J. MacFarlane, P. Wang Prism Computational Sciences Madison, WI J. P. Cassinelli,
Relative energy levels of electrons in gaseous atoms of the first twenty elements Increasing energy s p d f 1s Electronic Structure Energy levels within.
IAS 20 June 2013 Celebrating the achievements of Alan Gabriel Laboratory spectroscopy Exploring the process of dielectronic recombination S. Volonte.
Spectral signatures of dynamic plasmas  Many space missions over the past 30 yrs  A very dynamic Sun SoHO/EIT Hinode/SOT.
The “youngest” Ia SNR in the Galaxy. The best to study early phase of Type Ia Cosmic Ray acceleration at the Shell The best to study the cosmic ray origin.
Galactic Center Diffuse Emission Katsuji Koyama, Kyoto University (1) FeXXV-Kα Line (6.7 keV) Diffuse or Point Sources ? Flux distribution Equivalent width.
History of Periodic Table and Periodicity
Asami Hayato (RIKEN / Tokyo Univ. of Sci.)
4.2 IONIZATION ENERGY 4.6 TABLE 4.2 Ionization Energy of the Elements
Canonical Scenario of Dynamical Evolution
Valence Electrons Electrons in the highest (outer) energy level
Constructing the periodic table
Electronic Structure Work through this tutorial in sequence, or go directly to the section required using the links below. Use the ‘home’ button (to.
Nucleosynthesis and formation of the elements
Suzaku Observation of Tycho’s Supernova Remnant
4 Quantum Numbers (n, l, ml, ms)
Chapter 3, Part2 Nuclear Chemistry CHEM 396 by Dr
ELECTRON CONFIGURATIONS
Presentation transcript:

NEI Modeling What do we have? What do we need? AtomDB workshop Hiroya Yamaguchi (CfA) Fe ion population in CIE (AtomDB v.2.0.2) Temperature (keV) Fe 24+ Fe 25+ Fe 26+ Fe 16+ APED/APEC state-of-the-art dataset for He- & H-like ions of Z<=30 (+ DR lines of Fe) X-ray-emitting plasma: T = K ( keV) most of atoms are ionized to be He- or H-like states in CIE

Supernova Remnants = NEI !! E H-dominant (solar abundance) matter heavy elements are neutral metal-rich, almost neutral Shock-heated electrons ionize heavy elements.  = n e t = (cm -3 s) t = (n e /1cm -3 ) -1 yr

Supernova Remnants = NEI !! n e t (cm -3 s) Fe ion population in NEI (AtomDB v.2.0.2) Fe 24+ Fe 25+ Fe 26+ Fe 16+ kTe = 20 keV typical SNRs - Inner-shell process is essentially important for SNRs! - APEC can calculate ion population, but doesn’t output emission.

SNRs’ spectra of Fe K-shell band 9 3C397 (Type II) Kepler (Type Ia) Cr Mn Fe Ni Fe K  6.44 keV -> Fe XVII-XVIII (Palmeri+03) Ne-like neutral He-like RCW86 G272 SN1006 Tycho Kepler G N103B W49B CasA 3C397 G349 G292 G350 N132D

Innershell ionization of Be-like ions Li-like : 1s2s 2 ( 2 S) ->  K = 0 (for single-configuration wave function) in fact, K&M(1993) gave zero values for every Li-like ions. Configuration interaction (CI) effect cannot be ignored  CI = c 1 1s2s 2 ( 2 S) + c 2 1s2p 2 ( 2 S) ; c 2 ~ 0.3 (Gorczyca+2006)  K ≠ 0 ! Li-like (Gorczyca+06) Innershell process - Innershell ionization/excitation - Fluorescence or Auger (Kaastra & Mewe 93) … SPEX, XSPEC NEI v.1 # of electrons Fe K  a energy (Mendoza+04) K&M93 this work

Atomic data for emission above 5 keV Fe I-XVIXVII-XIVNi I-XVIIIXIX-XVICr, Mn A r, A a Palmeri+03a Mendoza+04 Gorczyca+03;06 Hasogle 08 (thesis) Palmeri+08aPalmeri+12 (K  ) Palmeri +03b (K  ) (not detected) x-sec (EII) phenomenological formula (Haque+06) x-sec (EIE) (IRON Project) Kris DR data for Fe e.g., Bautista & Badnell 07

Atomic data for emission below 5 keV A r, A a, (K  ) for all ionization states Palmeri+08b, Kucas+12: Ne, Mg, Si, S, Ar, Ca Palmeri+11: Al Palmeri+12: Na, Cl, Ti, Zn, etc.(Z <= 30) No longer need Kaastra & Mewe’s data Si XII Fe L S XIV Ar XVI Ca XVIII Fe Kepler Lighter elements are usually ionized to be He-like state. but a few exception… : K  from low-ionized Si (Warren & Hughes 04) Tycho: low-ionized Ca (Hwang+98) Also needed: Si thru Ca (Ne-like – Li-like) and L-shell data for Fe, Ca, Ni, …

Recombining plasma RRC (Fe 25+ -> Fe 24+ ) Fe 24+ K  W49B (Ozawa+09) What’s the origin? - collision with dense stellar wind matter and following adiabatic cooling? (HY+09) - thermal conduction into cloudy matter? (Zhou+11) Abundance & density are important information.

Recombining plasma RRC (Fe 25+ -> Fe 24+ ) Fe 24+ K  W49B (Ozawa+09)  (recomb rate) : Badnell+06  = n Fe25+ / (n Fe26+ + n Fe25+ + n Fe24+ + …) We only know n Fe25+ /n Fe24+ from the RRC/line ratio…  0.06 in W49B) Fe ion population in CIE (Mazzotta+98) Temperature (keV) Fe 24+ Fe 25+ Fe 26+ Fe 16+ then, used  = 0.04 to estimate Fe abundance and density. We (wrongly) assumed that ion pop in arbitrary recomb plasma is consistent to that in CIE plasma with a certain electron temperature.

Recombining plasma n e t (cm -3 s) Fe 24+ Fe 25+ Fe 26+ Fe 16+ kT e = 0.5 keV temperature (keV) n e t (cm -3 s) CIE Ionizing Recombining plasma model in XSPEC must be useful. We do already have atomic data! Some difficulty… Ionizing: kT e, n e t, abundances, normalization Recombining: + initial ion population -> 3-dimensional

Summary Ionizing NEI plasma - APEC is ready. - Fluorescence data are completed for all elements (Z <=30)! except for K  lines from lowly-ionized atoms (Kaastra & Mewe’s is no longer needed.) - EII/EIE rates for Fe & Ni are calculated by Kris & collaborators! - EII/EIE rates for Cr & Mn would be mostly important now. - and other abundant elements, Si, S, Ca… Recombining plasma - APEC & APED are both (almost) ready. - one more parameter (init ion pop.) is needed.