Stark Effect and Torsional Motion Interaction in Biphenyl L. H. Coudert, a L. F. Pacios, b and J. Ortigoso c a LISA, CNRS/Paris 12 University, Créteil,

Slides:



Advertisements
Similar presentations
Riccardo Raabe – Instituut voor Kern- en Stralingsfysica, K.U.Leuven Huelva 09/11/2011 IntroductionREX-ISOLDEResultsThe future Transfer reactions at ISOLDE:
Advertisements

Grupo de Física Nuclear Experimental G F E N CSIC I M E January 2006, Hirschegg, AustriaM.J.G. Borge, IEM CSIC1 Hirschegg’06: Astrophysics and Nuclear.
Marta Enciso Universidad Complutense de Madrid. BIFI Marta Enciso Wylie, JACS, 2009 Kannan, Int. J. Mol. Sci., 2009 Chen, PNAS, 2009 Dobson, Annu.
+ TERAHERTZ SPECROSCOPY OF METHYLAMINE R. A. Motiyenko, L. Margulès Laboratoire PhLAM, Université Lille 1, France V.V. Ilyushin, E.A. Alekseev Insitute.
Dynamical simulations of virus wrapping and budding T. Ruiz-Herrero 1, M. F. Hagan 2, E. Velasco 1 1.Universidad Autónoma de Madrid, Madrid, Spain 2.Brandeis.
CHARACTERIZATION AND FORMATION PROCESSES OF C 4 -, C 4 H and C 4 H - M. L. SENENT Departamento de Astrofísica Molecular e Infrarroja, Instituto de Estructura.
64th OSU International Symposium on Molecular Spectroscopy June 22-26, 2009 José Luis Doménech Instituto de Estructura de la Materia 1 MEASUREMENT OF ROTATIONAL.
Reactions induced by 11 Be beam at Rex-Isolde. Alessia Di Pietro INFN-Laboratori Nazionali del Sud.
The microwave spectrum of partially deuterated species of dimethyl ether D. Lauvergnat, a L. Margulès, b R. A. Motyenko, b J.-C. Guillemin, c and L. H.
Hyperfine Effects in Non-Rigid Molecules with 5 Equivalent Nuclei Laurent H. Coudert Laboratoire Inter-Universitaire des Systèmes Atmosphériques Créteil,
Potential for measurement of the tensor electric and magnetic polarizabilities of the deuteron and other nuclei in experiments with polarized beams Alexander.
The Inversion Splitting of 15 NH 2 D and 15 ND 2 H as obtained from their FIR Spectra M. Elkeurti, 1 L. H. Coudert, 2 J. Orphal, 2 C. E. Fellows, 3 and.
CHARACTERIZATION of the SiC 3 H - anion N. Inostroza 1, M. L. Senent 1 1 Instituto de Estructura de la Materia, C.S.I.C, Departamento de Astrofísica Molecular.
TORSIONAL EXCITATION IN O-H STRETCH OVERTONE SPECTRA OF ETHYL HYDROPEROXIDE CONFORMERS Shizuka Hsieh, Ma Thida, Margaret Nyamumbo, Hannah Hitchner, Noah.
The Water Molecule: Line Position and Line Intensity Analyses up to the Second Triad L. H. Coudert, a G. Wagner, b M. Birk, b and J.-M. Flaud a a Laboratoire.
CHEM 515 Spectroscopy Vibrational Spectroscopy II.
High-Lying Rotational Levels of Water obtained by FIR Emission Spectroscopy L. H. Coudert, a M.-A. Martin, b O. Pirali, b D. Balcon, b and M. Vervloet.
A.Perrin: Ohio-State 62th Molecular Symposium, June 2007 New analysis of the 3 & 4 bands of HNO 3 by high resolution Fourier transform spectroscopy in.
Ultraslow Dissociation of H 2 + Via Intense Laser Pulses Presented by: Brad Moser And George Gibson DAMOP 2010.
Microwave Spectroscopy II
Rotational states and introduction to molecular alignment
The torsional spectrum of disilane N. Moazzen-Ahmadi, University of Calgary V.-M. Horneman, University of Oulu, Finland.
1 Renner-Teller Coupling in H 2 S + : Partitioning the Ro- vibronic and Spinorbit Coupling Hamiltonian G. Duxbury 1, Christian Jungen 2 and Alex Alijah.
An Analysis of the 3 band of HTO aided by the Partridge and Schwenke PES Modou Tine and Laurent H. Coudert Laboratoire Inter-Universitaire des Systèmes.
Anh T. Le and Timothy C. Steimle* The molecular frame electric dipole moment and hyperfine interaction in hafnium fluoride, HfF. Department of Chemistry.
First high resolution analysis of the 5 3 band of nitrogen dioxide (NO 2 ) near 1.3 µm Didier Mondelain 1, Agnès Perrin 2, Samir Kassi 1 & Alain Campargue.
Interaction of the hyperfine coupling and the internal rotation in methylformate M. TUDORIE, D. JEGOUSO, G. SEDES, T. R. HUET, Laboratoire de Physique.
Einstein A coefficients for vibrational-rotational transitions of NO
Rovibrational Phase- Space Surfaces for Analysis of the υ 3 /2 υ 4 Polyad Band of CF 4 Justin Mitchell, William Harter, University of Arkansas Vincent.
Renner-Teller and Spin-Orbit Coupling in H 2 S + and AsH 2 G. Duxbury 1, Christian Jungen 2 and Alex Alijah 3 1 Department of Physics, University of Strathclyde,
Photoassociation Spectroscopy of Ultracold Molecules Liantuan XIAO State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser.
CZ5225 Methods in Computational Biology Lecture 4-5: Protein Structure and Structural Modeling Prof. Chen Yu Zong Tel:
Columbus, June , 2005 Stark Effect in X 2 Y 4 Molecules: Application to Ethylene M. ROTGER, W. RABALLAND, V. BOUDON, and M. LOËTE Laboratoire de.
Controlling Matter with Light Robert J. Gordon University of Illinois at Chicago DUV-FEL Seminar January 6, 2004 NSF, DOE, PRF, UIC/CRB, Motorola.
Mariano Carmona Gallardo Grupo de Física Nuclear Experimental Instituto de Estructura de la Materia CSIC-Madrid O. Tengblad 1, B.S. Nara Singh 2, M. Hass.
O. YAZIDI, A. BEN HOURIA AND Z. BEN LAKHDAR, LSAMA, Universitè de Tunis El Manar, Tunis, TUNISIA M. L. SENENT, Departamento de Astrofísica Molecular e.
Performance of Molecular Polarization Methods Marco Masia.
Praveenkumar Boopalachandran, 1 Jaan Laane 1 and Norman C. Craig 2 1 Department of Chemistry, Texas A&M University, College Station, Texas Department.
“Global Fit” of the high resolution infrared data of D 2 S and HDS molecules O. N. Ulenikov, E. S. Bekhtereva Physical Chemistry, ETH-Zurich, CH-8093 Zurich,
ROTATIONAL SPECTROSCOPY
Spectroscopy and electromagnetic waves. Polarisability of Matter.
35 Ca decay beta-delayed 1- and 2-proton spokespersons: J. Giovinazzo (CENBG), O. Tengblab (CSIC) institutions: Centre d’Etudes Nucléaires (Bordeaux) –
Rotational spectra of molecules in small Helium clusters: Probing superfluidity in finite systems F. Paesani and K.B. Whaley Department of Chemistry and.
Possibilities of measurement of tensor polarizabilities of the deuteron and other nuclei in experiments with polarized beams Alexander J. Silenko Research.
A 4D wave packet study of the CH 3 I photodissociation in the A band. Comparison with femtosecond velocity map imaging experiments A. García-Vela 1, R.
Rotational spectroscopy of two telluric compounds : vinyl- and ethyl-tellurols R.A. MOTIYENKO, L. MARGULES, M. GOUBET Laboratoire PhLAM, CNRS UMR 8523,
The Microwave Spectrum of the HCOOCD 2 H species of Methyl Formate L. H. Coudert, a T. R. Huet, b L. Margulès, b R. Motyenko, b and H. Møllendal c a LISA,
60th Ohio State University Symposium on Molecular Spectroscopy June 20–24, 2005 XTDS: A Java-Based Interface to Analyze and Simulate Spectra of Various.
Analysis of the microwave spectrum of the three-top molecule trimethoxylmethane L. Coudert, a G. Feng, b and W. Caminati b a Laboratoire Interuniversitaire.
The Microwave Spectrum of Monodeuterated Acetamide CH 2 DC(=O)NH 2 I. A. Konov, a L. H. Coudert, b C. Gutle, b T. R. Huet, c L. Margulès, c R. A. Motiyenko,
A. J. Merer Institute of Atomic and Molecular Sciences, Taipei, Taiwan Least squares fitting of perturbed vibrational polyads near the isomerization barrier.
LASER-INDUCED FLUORESCENCE (LIF) SPECTROSCOPY OF CYCLOHEXOXY
Determining the Tunneling Path of the Ar-CHF 3 Complex L. Coudert, a W. Caminati, b A. Maris, b P. Ottaviani, b and A. C. Legon c a Laboratoire Interuniversitaire.
60th Ohio State University Symposium on Molecular Spectroscopy June 20–24, 2005 Rotational Raman Spectroscopy of Ethylene Using a Femtosecond Time-Resolved.
The ethyl radical in superfluid helium nanodroplets: Rovibrational spectroscopy and ab initio calculations 1 Department of Chemistry, University of Georgia.
Vibrational and Hyperfine Coupling Effects in (HI) 2 S. P. Belov, F. Willaert, B. A. McElmurry, R. R. Lucchese, J. W. Bevan, L. H. Coudert, and J. T. Hougen.
High Resolution Electronic Spectroscopy of 9-Fluorenemethanol (9FM) in the Gas Phase Diane M. Mitchell, James A.J. Fitzpatrick and David W. Pratt Department.
A New Hybrid Program For Fitting Rotationally Resolved Spectra Of methylamine-like Molecules: Application to 2-Methylmalonaldehyde Isabelle Kleiner a and.
Analysis of the rotation-torsion spectrum of CH 2 DOH within the e 0, e 1, and o 1 torsional levels L. H. Coudert, a John C. Pearson, b Shanshan Yu, b.
DIRECT OBSERVATION OF JOSEPHSON VORTICES
The Microwave Spectrum of the Mono Deuterated Species of Methyl Formate HCOOCH 2 D L. H. Coudert, a L. Margulès, b G. Wlodarczak, b and J. Demaison b a.
The HCl/H2O Solid System: Infrared Spectra of HCl Tri-and Hexahydrate
International Symposium on Molecular Spectroscopy
M. VERVLOET, M. A. MARTIN-DRUMEL., D. W. TOKARYK, O. PIRALI
High-Resolution Spectroscopy and Analysis of the n3/2n4 Dyad of CF4
Brooks H. Pate, Gordon G. Brown, and Justin L. Neill
The torsional spectrum of doubly deuterated methanol CHD2OH
F H F O Semiexperimental structure of the non rigid BF2OH molecule (difluoroboric acid) by combining high resolution infrared spectroscopy and ab initio.
What about ATTACHED instead EMBEDDED impurities ? HeN-Cs2(3Σ+u)‏
COMPREHENSIVE ANALYSIS OF INTERSTELLAR
Presentation transcript:

Stark Effect and Torsional Motion Interaction in Biphenyl L. H. Coudert, a L. F. Pacios, b and J. Ortigoso c a LISA, CNRS/Paris 12 University, Créteil, France b ETSI Montes, Universidad Polytécnica de Madrid, Madrid, Spain c Iinstituto de Estructura de la Materia, CSIC, Serrano 121, Madrid, Spain

Overview The spectroscopy Stark interaction Alignment

Biphenyl is a non-rigid molecule The torsional angle 1 is 2  1. Merer and Watson, J. Mol. Spec. 47, 499 (1973) z x y

The potential energy function It has 90° periodicity

The potential energy function   eq.  Pacios and Gómez, Chem. Phys. Letters 432, 414 (2006)

Torsional energy levels Merer and Watson, J. Mol. Spec. 47, 499 (1973)

Stark interaction Hamiltonian

Polarizability tensor Coupling between E and the large amplitude motion Ramakrishna and Seideman, Phys. Rev. Letters 99, (2007)

Stark-rotation-torsion energy levels

Calculation I

Rigid case. 

Non-rigid case

Kumar, Gross, Safvan, Rajgara, and Mathur, Phys. Rev. A 53, 3098 (1996) E Alignment z Z The stark interaction energy is minimized

Calculation II

Rigid case. 

T  K. Intensity = W·cm  << |   

Non-rigid case

T  K. Intensity = W·cm  << |   

Laser Beam Alignment rigid case Z y x z  

Laser Beam Alignment non-rigid case Z y x z y x z      

Non-rigid case:  |    T  K. No laser

T  K. Intensity = W·cm  Non-rigid case:  |   