Intermittent Compression By Jason, Brad, Tim, Yasuko
Objectives Purpose of Intermittent Compression Proper application When to use intermittent compression Discussion of Effectiveness Factors affecting usage of intermittent compression
Instructions Click on hyperlink to view slides of each topic or concept Use hyperlink at bottom of page to return to topics page Voice over
Topics History Biophysical Characteristics Method of Application Examination of Evidence Based Research Review Questions References
History Add Voice Over Various forms of intermittent compression have had a history of 70 years of clinical effectiveness. Earliest appeared in 1930’s Topic page
Biophysical Charcteristics 1.Lymphatic and venous system 2.Circumferential and sequential compression 3.Effect of intermittent compression a. Tissue - Tissue thickness and muscle mass - Fat mass b. Range of motion c. Pain d. Bone mineral density Video Topic page
Method of Application 1.Indication 2.Contraindication 3.Precautions 4.Recommendations for use 5.Proper demonstration of physical agent 1.Video 2.Video Topic page
Method of Application Indications – Post-traumatic edema— – Post-surgical edema— – Primary and Secondary lymphedema— Primary is caused by a congenital disorder of the lymphatic vessels. Secondary is caused by some other disease or dysfunction.
Method of Application Indications – Venous Stasis Ulcers— Areas in the body in which tissue breakdown and necrosis occur as a result of impaired venous circulation. – Prevention of Deep Vein Thrombosis (DVT)— DVT is a blood clot that occurs due to poor circulation. Blood flow is slow enough to allow coagulation, causing a thrombus. Intermittent compression increases the circulation rate thereby preventing a clot from forming.
Method of Application Contraindications – Heart failure or pulmonary edema— Increased pressure from the compression device damages the vasculature of the cardiovascular system decreasing the cardiac output. – Recent or acute DVT, thrombophlebitis, pulmonary embolism— The thrombus may become dislodged or the embolus may travel due to compression at the site of the clot. This would cause damage to the site where it becomes lodged after traveling through the bloodstream.
Method of Application Contraindications Obstructed lymphatic or venous return— Total obstruction of lymphatic or venous system may be caused by thrombus, damaged lymph nodes, tumor or other masses. The obstruction must be removed before compression can be applied. Severe peripheral arterial disease or ulcers due to arterial insufficiency— Compression further closes down the diseased arteries causing lack of circulation.
Method of Application Contraindications Acute local skin infection— Device promotes environment conducive to infection, by increasing moisture and temperature. Unhealed fractures and unresolved joint dislocations— compression device adds unwanted stress to the area.
Method of Application Precautions Impaired sensation or mentation— Patient is unable to recognize or feel pain or pressure. Uncontrolled hypertension— Compression may further elevate a persons blood pressure. Stroke or significant cerebrovascular insufficiency— Compression causes hemodynamic changes and alters circulation to the brain.
Method of Application Precautions Superficial peripheral nerves— Nerve compression is possible when too much pressure is applied. Ischemia— compression elevates intramuscular pressure causing ischemia, similar to compartment syndrome. Wrinkling of stockinette— Wrinkles cause high pressure areas and subsequent bruising.
Method of Application Demonstration of Physical Agent Set up Establish the absence of contraindications. Remove any jewelry Determine blood pressure Measure and record girth measurement Cover area with stockinette, smooth out wrinkles Select appropriate size of appliance for extremity Insert the injured limb into the appliance, avoid bunching of garments Elevate the limb during treatment Connect appliance to the compression unit
Method of Application Initiation of Treatment Select temperature Select maximal pressure for associated extremity Select on/off times Select appropriate treatment time Informed consent Encourage gentle ROM exercises at distal phalanges For longer treatments, interrupt occasionally to inspect capillary refill or unusual markings
Method of Application Termination of Treatment Select drain mode to remove air or fluid Gently remove body part from appliance Re-measure circumference to determine amount of edema lost Apply compression wrap and any appropriate supportive device. Encourage elevation.
Properties of Intermittent Compression Systems Garment Pumps Timing Pressure Compression type
Properties of Intermittent Compression Systems Garment – Essential functions that the compression garment must provide include: covering a limb, remaining in place, and applying pressure. – All cuffs of today include an air bladder. – Need to be made of certain material that is designed for the specific use of the patient. Deep Vein Thrombosis cuffs are designed for single use patients – Non-durable fabrics Long term cuffs designed to be more durable and comfortable.
Properties of Intermittent Compression Systems Pumps
Properties of Intermittent Compression Systems Timing
Properties of Intermittent Compression Systems Pressure
Properties of Intermittent Compression Systems Compression type
Exam of Evidence Based Research Voice over Still Photos Topic page
Review Questions Voice over Topic page
References Morris, R. J. (2008). Intermittent pneumatic compression-system and applications. Journal of Medical Engineering & Technolog, P.Albertazzi, S. S. (2005). Effect of intermittent compression therapy on bone mineral density in women with low bone mass. Bone, Starkey, C. (2004). Therapeutic Modalities. Philadelphia: F.A. DAVIS COMPANY. Tsang, Kavin K.W., Hertel, Jay, Denegart, Craig R. (2003). Volume Decreases After Elevation and intermittent Compression of Postacute Ankle Sprains Are Negated by Gravity-Dependent Positioning. Journal of Athletic Training, 38, (4), Prentice, W.E. (2008). Therapuetic Modalities in Sports Medicine (6 th ed.). St. Louis, MO: Mosby-Year Book. Cameron, M.H. (2003). Physical Agents in Rehabilitation: From Research to Practice (2 nd ed.). St. Louis, MO: Saunders.