Linear Algebra Fall 2007 Teaching, grading policies, homeworks, and so on are to be found at: mathx.kaist.ac.kr/~schoi/teaching.html. Check for updates.

Slides:



Advertisements
Similar presentations
Geometry Chapter 2 Terms.
Advertisements

Brief Introduction to Logic. Outline Historical View Propositional Logic : Syntax Propositional Logic : Semantics Satisfiability Natural Deduction : Proofs.
Introduction to Proofs
Sorting It All Out Mathematical Topics
Logic and Proof. Argument An argument is a sequence of statements. All statements but the first one are called assumptions or hypothesis. The final statement.
Brief Introduction to Logic. Outline Historical View Propositional Logic : Syntax Propositional Logic : Semantics Satisfiability Natural Deduction : Proofs.
So far we have learned about:
First Order Logic (chapter 2 of the book) Lecture 3: Sep 14.
MATH 330: Ordinary Differential Equations Fall 2014.
Proof by Deduction. Deductions and Formal Proofs A deduction is a sequence of logic statements, each of which is known or assumed to be true A formal.
TR1413: Discrete Mathematics For Computer Science Lecture 1: Mathematical System.
Computability Thank you for staying close to me!! Learning and thinking More algorithms... computability.
THE TRANSITION FROM ARITHMETIC TO ALGEBRA: WHAT WE KNOW AND WHAT WE DO NOT KNOW (Some ways of asking questions about this transition)‏
Linear Systems The definition of a linear equation given in Chapter 1 can be extended to more variables; any equation of the form for real numbers.
Mathematics and TOK Exploring the Areas of Knowlege.
ELEMENTARY NUMBER THEORY AND METHODS OF PROOF
Review for Final Exam Systems of Equations.
First Order Logic. This Lecture Last time we talked about propositional logic, a logic on simple statements. This time we will talk about first order.
LIAL HORNSBY SCHNEIDER
CS 2210 (22C:019) Discrete Structures Logic and Proof Spring 2015 Sukumar Ghosh.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 5 Systems and Matrices Copyright © 2013, 2009, 2005 Pearson Education, Inc.
Psy B07 Chapter 1Slide 1 ANALYSIS OF VARIANCE. Psy B07 Chapter 1Slide 2 t-test refresher  In chapter 7 we talked about analyses that could be conducted.
Areas of knowledge – Mathematics
To construct a logical argument using algebraic properties
Mathematical Explanations and Arguments Number Theory for Elementary School Teachers: Chapter 1 by Christina Dionne Number Theory for Elementary School.
C OURSE : D ISCRETE STRUCTURE CODE : ICS 252 Lecturer: Shamiel Hashim 1 lecturer:Shamiel Hashim second semester Prepared by: amani Omer.
Rev.S08 MAC 1140 Module 12 Introduction to Sequences, Counting, The Binomial Theorem, and Mathematical Induction.
Introduction to the Theory of Computation
Linear Algebra Fall 2013 mathx.kaist.ac.kr/~schoi/teaching.html.
Introduction to Proofs
Math 3121 Abstract Algebra I Section 0: Sets. The axiomatic approach to Mathematics The notion of definition - from the text: "It is impossible to define.
Teaching Students to Prove Theorems Session for Project NExT Fellows Presenter: Carol S. Schumacher Kenyon College and.
MAT 333 Fall  As we discovered with the Pythagorean Theorem examples, we need a system of geometry to convince ourselves why theorems are true.
1 Sections 1.5 & 3.1 Methods of Proof / Proof Strategy.
First Order Logic Lecture 2: Sep 9. This Lecture Last time we talked about propositional logic, a logic on simple statements. This time we will talk about.
Copyright © Cengage Learning. All rights reserved. CHAPTER 3 THE LOGIC OF QUANTIFIED STATEMENTS THE LOGIC OF QUANTIFIED STATEMENTS.
Elementary Linear Algebra Anton & Rorres, 9th Edition
Solving Systems Using Elimination
1 Introduction to Abstract Mathematics Chapter 2: The Logic of Quantified Statements. Predicate Calculus Instructor: Hayk Melikya 2.3.
Great Theoretical Ideas in Computer Science.
Naïve Set Theory. Basic Definitions Naïve set theory is the non-axiomatic treatment of set theory. In the axiomatic treatment, which we will only allude.
{ What is a Number? Philosophy of Mathematics.  In philosophy and maths we like our definitions to give necessary and sufficient conditions.  This means.
Logic UNIT 1.
First Order Logic Lecture 3: Sep 13 (chapter 2 of the book)
Copyright © Curt Hill Proofs An Introduction.
Ch : Solving Systems of Equations Algebraically.
Advanced Engineering Mathematics, 7 th Edition Peter V. O’Neil © 2012 Cengage Learning Engineering. All Rights Reserved. CHAPTER 4 Series Solutions.
1 CS 381 Introduction to Discrete Structures Lecture #1 Syllabus Week 1.
Understanding the difference between an engineer and a scientist There are many similarities and differences.
MTH 070 Elementary Algebra Chapter 2 Equations and Inequalities in One Variable with Applications 2.4 – Linear Inequalities Copyright © 2010 by Ron Wallace,
CS104:Discrete Structures Chapter 2: Proof Techniques.
Mathematics and TOK Exploring the Areas of Knowlege.
Section 1.7. Definitions A theorem is a statement that can be shown to be true using: definitions other theorems axioms (statements which are given as.
Foundations of Discrete Mathematics Chapter 1 By Dr. Dalia M. Gil, Ph.D.
5 Lecture in math Predicates Induction Combinatorics.
Notions & Notations - 1ICOM 4075 (Fall 2010) UPRM Department of Electrical and Computer Engineering University of Puerto Rico at Mayagüez Fall 2010 ICOM.
The History Of Calculus
Chapter 3 Systems of Equations. Solving Systems of Linear Equations by Graphing.
TOK: Mathematics Unit 1 Day 1. 2 – B 2 = AB – B 2 Factorize both sides: (A+B)(A-B) = B(A-B) Divide both sides by (A-B): A = B = B Since A = B, B+B=B Add.
Chapter 1 Logic and proofs
Proof And Strategies Chapter 2. Lecturer: Amani Mahajoub Omer Department of Computer Science and Software Engineering Discrete Structures Definition Discrete.
CS 2210:0001 Discrete Structures Logic and Proof
What is Mathematics? The science (or art?) that deals with numbers, quantities, shapes, patterns and measurement An abstract symbolic communication system.
The subject of language, logic and proofs…
Math Linear Algebra Introduction
3D Transformation CS380: Computer Graphics Sung-Eui Yoon (윤성의)
First Order Logic Rosen Lecture 3: Sept 11, 12.
Philosophy of Mathematics: a sneak peek
Solving Systems of Linear Equations in Three Variables
Presentation transcript:

Linear Algebra Fall 2007 Teaching, grading policies, homeworks, and so on are to be found at: mathx.kaist.ac.kr/~schoi/teaching.html. Check for updates each week.

Course HPs mathsci.kaist.ac.kr: homework, questions and answers, schedules, exam scores, grades mathx.kaist.ac.kr/~schoi: homework, schedules, important lecture policies( 수업방침 ), sample exams, class assistants, how to survive…

Purpose of mathematics Mathematics originates with Pythagoras. Babylonians and Egyptians had many computations but no proofs. Proofs are ways to justify your reasoning systematically so that the truth is democratically verified. That is most people agree with the statements. (Science starts with Ionians in the same way. ) It is generally considered that the Greeks valued reason, logic, arguments very much for some reasons. This forms a foundations of Roman and modern age. Pythagoras starts a system of definitions, theorems, and proofs. Claims that whole world is made of numbers. Plato is said to be the last of the Pythagorians. This forms a beginning of the western civilizations.

We now grow out of high school mathematics Mathematics are taught as means to compute numbers. This is useful and very relevant to society and is what politicians and company presidents want…. (Applied mathematics is important!!!) The real purpose of mathematics is to verify results and organize them into an understandable system of theorems and proofs. In this course, we begin. This is an opportunity for you to be more than just an engineer computing out numbers without understanding. A system of knowledge will aid you in finding right computations to do and verify your results often.

What is a proof? Proofs can be given only in a system with given axioms and logical operations as in Euclidean geometry. In the system, we have a way of organizing ideas so that experts agree and are not confused about the validity (Unlike 19th century Alg. Geometers, Riemann, so on) Rigorous proof is a certification of validity which we can rely on. Experimental scientists claim to use experiments to verify their results but science always involves models and assumptions which are not verifiable by experiments only.

Rigorous proof mathematics is very different In other fields, such as engineering, biology, statistics, chemisty, physics, a lot of reasoning that occur are often not acceptable to mathematics in pure point of view. What Science does is to set up some loose system which can be verified or falsified. This uses a lot of tradition and logic and imaginations. Often precise logical steps are missing. In pure mathematical proofs, we strive to eliminate any gaps in logic however plausible the reasoning might be. (Wiles proof of Fermat conjecture.) In applying mathematics to other fields, one needs to be careful about this distinction. Often, this is not followed completely. The other fields rely on authority more.

Learning rigorous mathematics The type of theorem and proof presentation of mathematics are formal and maybe is not the best way to learn. Communications with other people help. Abstract notions can be understood by specifying. That is find examples. Proofs can be more easily understood by using specific examples. Doing exercises.

Greek mathematics Pythagoras: first introduced formal methods of proofs. Proved Pythagoras theorem. Existence of Icohahedrons. Tried to show that universe is made of numbers. Plato: Tried to develop geometry to understand everything Euclides: A system of geometry Archimedes: integration, series, physics of lever, pulleys… Greek mathematics became a lost subject in the dark ages. Maybe people lost interest in thinking…

Beginning of abstract mathematics In 17th century, Newton discovered calculus and invented Newtonian mechanics. There were many applications. A golden age of mathematics in Europe 17-20th century follows. By 19th century, so much mathematics were developed and confusions began to arise. Existence questions were unanswerable in many cases. Italian school of algebraic geometry made many mistakes by confusions.

Sets and logic Frege started logic and set theory. Everything should be put in logical fom. Russell, Whitehead tried to give foundations of mathematics using logic and set theory. Hilbert thought that this was possible. Godel found some problems with it. Brouwer began intuitionism. However, today most mathematicians are not following intuitionism. Most mathematicians ignore many subtle issues in mathematical logic

What is an abstract mathematics? We pretend that only sets exists and logic is the only means to study sets. From set theory, we build objects such as numbers, vectors, functions so on and introduce definitions about them and study their relationships to one another. We prove theorems, lemmas, corollaries using logic and definitions. These mathematical objects and results are applied in many general situations by making concrete things abstract and conversely.

Why use abstract notions? An abstract notion stands for many things at the same time. Thus this reduces the amount of thinking and working. (Like Object oriented programming in computer science) Sometimes abstract objects can be viewed as an another type of abstract objects. This gives us much freedom. Many problems can be viewed completely elementary if interpreted differently in abstract manner. If abstract ideas do work, it brings significant improvements. A downside is that abstract notions can be too specific to be used in situations where there are many missing knowledge and require human expertise and feelings instead of logical thinking. However, eventually, we wish to reduce everything to mathematics to understand complete. By this I mean we should include statistical methods as well.

Logic: the methods of proofs (more at old logics notes at the course HP) To prove P  Q: Assume P is true and then prove Q. – Given Goal -, -, P  Q – Given Goal -,-, P Q (Direct proof)

–Convert to ~Q  ~P: Assume Q is false and prove P is false. Given Goal -,- P  Q Given Goal -,-, ~Q ~P Example: –Given: Goal –Given: Goal:

To prove ~P: 1. Re-express in positive form. 2. Assume P and reach a contradiction. – Given: -,- Goal: ~P – Given:-,-. P Goal: contradiction To use P  Q: –modus ponens: P, P  Q : Q – modus tollens: P  Q, ~Q; ~P To prove a goal of form P ^ Q: Prove P and Q separately. To use P ^ Q: Given as separate P and Q. To prove : Prove P  Q and Q  P. To use : Given as separate P  Q and Q  P

To use a given of form : Divide into cases: 1. Assume P and case 2. Assume Q. –Given Goal: --- –Case 1: Given P, Goal: -- –Case 2: Given Q, Goal:--- To prove a goal of form (1) Either prove P or prove Q (2) Assume P is false and show Q is true

–Example: Given: Goal: (divide by x here.) To prove a goal of form Given -,- Goal Given -,-, x arbitrary Goal P(x) To prove a goal of from Given -,- Goal Given -,-, x guessed Goal P(x)

–Example: Given x>0, Goal: Guess work Given Goal y(y+1)=x To use a given of form – x o introduced new variable P(x o ) existential instantiation To use a given of form We can plug in any value a for x.

Course outline Abstract vector spaces and linear transformations –Review matrices: solving equations by row operations. Reduced forms. –Vector spaces: abstract device –Linear transformations Classifications of linear transformations: invariants. –Polynomials: Ideals, generators –Determinants: invariant of linear maps –Elementary canonical forms –Rational form, Jordan forms Inner product spaces

Purpose of the course How to prove things: introductions to pure mathematics (and applied). Understand abstract notions. Using and finding examples Understand vector spaces, linear transformations Classify linear transformations independent of coordinate expressions.

Purpose of linear algebra People can add, subtract, multiply. Nonliear mathematics are hard Linearizations are good approximations (1st step) Linearizations are good design principles. Mathematical analysis, Quantum physics are linear (but infinite dimensional). Most of mathematics consist of linear or linear maps.

Linear algebra and higher level courses In algebra, field theory, rings, modules are generalizations of vector spaces or uses linear algebra. Number theory also uses linear alg. Linear maps are generalized to Lie groups, useful in many areas. Infinite dimensional generalizations gives us mathematical analysis and quantum theory Geometries are analysized locally by linear algebra

Chapter 1. Linear equations Fields System of linear equations: Row equivalences, Row reduced echelon form, elementary marices Invertible matrice