Carbon-13 Nuclear Magnetic Resonance

Slides:



Advertisements
Similar presentations
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy
Advertisements

What does this spectrum tell us? Two peaks = two chemical environments One chemical environment contains 3 hydrogen atoms, the other 1 hydrogen Using the.
1 Signals from coupled protons that are close together (in Hz) can show distorted patterns. When ν >> J, the spectra is said to be first-order. Non-first-order.
Chapter 12 Spectroscopy and Structure Determination
Structure Determination: MS, IR, NMR (A review)
NMR Spectroscopy.
1 CHAPTER 13 Molecular Structure by Nuclear Magnetic Resonance (NMR)
Integration 10-6 Integration reveals the number of hydrogens responsible for an NMR peak. The area under an NMR peak is proportional to the number of equivalent.
1 Nuclear Magnetic Resonance Spectroscopy III Advanced Concepts: ORGANIC I LABORATORY W. J. Kelly.
Spin-Spin Splitting: Some Complications 10-8 Complex multiplets sometimes occur when there is a relatively small difference in δ between two absorptions.
NMR Nuclear Magnetic Resonance. 1 H, 13 C, 15 N, 19 F, 31 P.
2DNMR. Coupling Constants Geminal Coupling are usually negative: CH 2 Vicinal coupling usually positive: CH-CH Why? Coupling is through bonding electrons;
FT-NMR. Fundamentals Nuclear spin Spin quantum number – ½ Nuclei with spin state ½ are like little bar magnets and align with a B field. Can align with.
Nuclear Magnetic Resonance (NMR) Spectroscopy
Using NMR Spectra to Analyze Molecular Structure 10-4 The position of an NMR absorption of a nucleus is called its chemical shift. Chemical shifts depend.
1 Nuclear Magnetic Resonance Spectroscopy Renee Y. Becker Valencia Community College CHM 2011C.
Lecture 3 NMR Spectroscopy: Spin-spin Splitting in 1 H NMR Integration Coupling Constants 13 C NMR Sample Preparation for NMR Analysis Due: Lecture Problem.
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy Based on McMurry’s Organic Chemistry, 7 th edition.
Nuclear Magnetic Resonance (NMR) Spectroscopy Structure Determination
Nuclear Magnetic Resonance Spectroscopy. The Use of NMR Spectroscopy Used to map carbon-hydrogen framework of molecules Most helpful spectroscopic technique.
Nuclear Magnetic Resonance Spectroscopy
Proton NMR Spectroscopy. The NMR Phenomenon Most nuclei possess an intrinsic angular momentum, P. Any spinning charged particle generates a magnetic field.
Nuclear Magnetic Resonance
NMR-Part Chemical Shifts in NMR The nuclei not only interact with the magnetic field but also with the surronding nuclei and their electrons. The.
C NMR Spectroscopy. 1 H and 13 C NMR compared: both give us information about the number of chemically nonequivalent nuclei (nonequivalent hydrogens.
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy Based on McMurry’s Organic Chemistry, 6 th edition.
1 Chapter 13 Nuclear Magnetic Resonance Spectroscopy Leroy Wade.
1 Nuclear Magnetic Resonance Spectroscopy 13 C NMR 13 C Spectra are easier to analyze than 1 H spectra because the signals are not split. Each type of.
Structure Determination: Nuclear Magnetic Resonance Spectroscopy.
Nuclear Magnetic Resonance Spectroscopy. 2 Introduction NMR is the most powerful tool available for organic structure determination. It is used to study.
C NMR Spectroscopy. 1 H and 13 C NMR compared: both give us information about the number of chemically nonequivalent nuclei (nonequivalent hydrogens.
Chapter 14 NMR Spectroscopy Organic Chemistry 6th Edition Dr. Halligan
Learning Objectives Use high resolution n.m.r spectrum of simple molecules (carbon, hydrogen & oxygen) to predict The different types of proton present.
All atoms, except those that have an even atomic number and an even mass number, have a property called spin.
Chapter 13 - Spectroscopy YSU 400 MHz Nuclear Magnetic Resonance Spectrometer(s)
Nuclear Magnetic Resonance Information Gained: Different chemical environments of nuclei being analyzed ( 1 H nuclei): chemical shift The number of nuclei.
Chapter 13 Structure Determination: Nuclear Magnetic Resonance Spectroscopy.
Important Concepts 10 1.NMR – Most important spectroscopic tool for elucidating organic structures. 2.Spectroscopy – Based on lower energy forms of molecules.
NMR Spectroscopy. NMR NMR uses energy in the radio frequency range. NMR uses energy in the radio frequency range. This energy is too low to cause changes.
Nuclear Magnetic Resonance of Alkenes 11-4 The pi electrons exert a deshielding effect on alkenyl hydrogens. The proton NMR spectra of trans-2,2,5,5-tetramethyl-3-hexene.
The Number of Absorptions Protons have different chemical shifts when they are in different chemical environments Types of protons: – Homotopic Protons.
Created with MindGenius Business 2005® Nuclear Magnetic Resonance Spectrometry Nuclear Magnetic Resonance Spectrometry.
1 13 C-NMR, 2D-NMR, and MRI Lecture Supplement: Take one handout from the stage.
C13 NUCLEAR MAGNETIC RESONANCE (NMR)
California State University, Monterey Bay CHEM312
CHEM 344 Spectroscopy of Organic Compounds Lecture 2 6 th and 10 th September 2007.
C NMR Spectroscopy Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Integration10-6 Integration reveals the number of hydrogens responsible for an NMR peak. The area under an NMR peak is proportional to the number of equivalent.
CHAPTER 11 Alkenes; Infrared Spectroscopy and Mass Spectroscopy.
11.1 Nuclear Magnetic Resonance Spectroscopy
Introduction to NMR Spectroscopy
The Use of NMR Spectroscopy
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy
NMR spectroscopy – key principles
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy
Nuclear Magnetic Resonance Spectroscopy
The Use of NMR Spectroscopy
13C NMR Spectroscopy Dr. A. G
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy
Structure Determination: Nuclear Magnetic Resonance Spectroscopy
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy
CARBON-13 NMR.
Advanced Pharmaceutical Analysis 13 C NMR
Introduction Nuclear magnetic resonance spectroscopy (NMR) is the most powerful tool available for organic structure determination. It is used to study.
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy
Introduction to NMR Spectroscopy
Assis.Prof.Dr.Mohammed Hassan
The Use of NMR Spectroscopy
Introduction to NMR Spectroscopy
Introduction to NMR Spectroscopy
Presentation transcript:

Carbon-13 Nuclear Magnetic Resonance 10-9 Carbon-13 Nuclear Magnetic Resonance The NMR spectroscopy of 13C is of greater potential utility than that of 1H NMR. The 13C spectra of an organic compound is much simpler than the 1H spectra because spin-spin coupling between adjacent carbon atoms and between carbon and hydrogen atoms can be avoided.

Carbon NMR utilizes an isotope in low natural abundance: 13C. Carbon occurs as a mixture of two principle isotopes, 12C (98.89%) and 13C (1.11%). Of these, only 13C is active in NMR. Because of the low abundance of 13C and its weaker magnetic resonance (1/6000 as strong as 1H), FT NMR is usually used for 13C spectroscopy because multiple pulsing and signal averaging allows the accumulation of strong signals than would otherwise be possible. Carbon-carbon coupling is absent in 13C spectra due to the very low probability of two 13C nuclei being adjacent to each other in a single molecule (.0111 x .0111 ~ .0001). 13C-1H coupling is present, however, the chemical shift range of 13C is much greater than the splittings due to 1H, which precludes the overlapping of adjacent multiplets. The 13C chemical shifts are reported relative to an internal standard, usually (CH3)4Si.

The 13C NMR spectra of bromoethane above exhibits 13C splitting by the methyl and methylene protons. The 13C peak due to C1 is first split by its own two hydrogens to produce a triplet. Each of the triplet peaks is then split into a quartet by the adjacent protons on the C2 carbon. The 13C peak due to C2 is first split by its own three hydrogens to produce a quartet. Each of the quartet peaks is then split into a triplet by the adjacent protons on the C1 carbon.

Hydrogen decoupling give single lines. 13C-1H coupling can be completely removed by a technique called “broad-band hydrogen (or proton) decoupling.” In this technique, a strong broad radio frequency signal covering the entire resonant frequency range for hydrogen is simultaneously applied at the same time as the 13C signal. The broad-band hydrogen signal causes rapid - flips of the hydrogen nuclei, effectively averaging their local magnetic field contributions. Using this technique simplifies the spectra of bromoethane to two single lines.

Proton decoupling is particularly powerful when analyzing complex molecules because every magnetically distinct carbon gives only a single peak. The decoupled 13C spectra of methylcyclohexane shows only five peaks, revealing the twofold symmetry in the structure. A limitation of FT 13C NMR spectroscopy is that, due to difficulties in integration, peak intensities (areas) no longer correspond to the numbers of nuclei present.

Carbon, like hydrogen, has chemical shifts which depend upon its chemical environment. Electron withdrawing groups cause deshielding. The chemical shifts go up in order: primary < secondary < tertiary carbon.

The numbers of non-equivalent carbons in the isomers of C7H14 are clearly demonstrated by the numbers of 13C peaks in their NMR spectra.

Advances in FT NMR are greatly aiding structure elucidation: DEPT 13C and 2D-NMR. Using sophisticated time-dependent pulse sequences (two-dimensional NMR), it is now possible to establish coupling (e.g. bonding) between close-lying hydrogens (homonuclear correlation) or connected carbon and hydrogen atoms (heteronuclear correlation). This, in effect, determines the molecular connectivity of a molecule by measuring the magnetic effect of neighboring atoms on one another along a carbon chain.

On such pulse sequence is the distortionless enhanced polarization transfer (DEPT) 13C NMR spectrum. DEPT gives information specifying which type of carbon gives rise to a specific signal in the normal 13C spectrum: CH3, CH2, CH, or Cquaternary. A DEPT experiment consists of three spectra: Normal broad-band decoupled spectra; DEPT-90 pulse sequence spectra, which reveals signals only of carbons bound to one hydrogen; DEPT-135 pulse sequence spectra which produces normal CH3 and CH signals, but negative absorptions for CH2 and no peaks for quaternary carbons.

Limonene DEPT spectra: Spectrum A: All 10 lines – 6 alkyl C at high field, 4 alkenyl C at low field Spectrum B: CH carbons Spectrum C: CH carbons, positive signal CH3 carbons, negative signal CH2 carbons Spectrum A lines – Spectrum C lines: quaternary carbon

We can apply 13C NMR spectroscopy to the problem of the monochlorination of 1-chloropropane. Both 1,1- and 1,2-dichloropropane should exhibit three carbon signals each. The groups of three signals would be spaced differently due to the different arrangement of chlorine substituents. 1,3-dichloropropane should exhibit only two carbon signals. The two deshielded chlorine bearing carbons assignments in 1,2-dichloropropane can be made using DEPT data. The signal at 49.5 ppm appears inverted in a DEPT-135 spectrum (CH2). The signal at 55.8 ppm is the only absorption in a DEPT-90 spectrum