Volume Data Analysis and Visualization Stefan Bruckner Department of Informatics University of Bergen.

Slides:



Advertisements
Similar presentations
3-D. 3-D IMAGING IN MEDICINE IS A METHOD IN WHICH A SET OF DATA IS COLLECTED FROM A 3- D OBJECT, PROCESSED BY A COMPUTER, AND DISPALAYED ON A 2-D COMPUTER.
Advertisements

Bath, 25 Years of CG Hair Modelling, Animation, and Rendering Wen Tang School of Computing, University of Teesside
The title will be announced during or at the end of the talk.
Towards a zoomable cell abstract cell natural coordinate system Data > D Protein Structures from PDB ? A IHGFBCDE > Images from scientific.
Prof. Carolina Ruiz Computer Science Department Bioinformatics and Computational Biology Program WPI WELCOME TO BCB4003/CS4803 BCB503/CS583 BIOLOGICAL.
Seminar aus Computergraphik Seminar aus Visualisierung SS 2015 Organizer: Alexey Karimov Teaching staff: Gabriel Mistelbauer, Artem Amirkhanov,
IView: A Feature Clustering Framework for Suggesting Informative Views in Volume Visualization Ziyi Zheng, Nafees Ahmed, Klaus Mueller Visual Analytics.
University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2005 Tamara Munzner Information Visualization.
Expectation Maximization Method Effective Image Retrieval Based on Hidden Concept Discovery in Image Database By Sanket Korgaonkar Masters Computer Science.
T.Sharon 1 Internet Resources Discovery (IRD) Video IR.
Readability Metrics for Network Visualization Cody Dunne and Ben Shneiderman Human-Computer Interaction Lab & Department of Computer Science University.
Focus of Attention for Volumetric Data Inspection Ivan Viola 1, Miquel Feixas 2, Mateu Sbert 2, and Meister Eduard Gröller 1 1 Institute of Computer Graphics.
Memory Efficient Acceleration Structures and Techniques for CPU-based Volume Raycasting of Large Data S. Grimm, S. Bruckner, A. Kanitsar and E. Gröller.
How to do a Successful PhD (in Visualization) Eduard Gröller Institute of Computer Graphics and Algorithms Vienna University of Technology.
Hardware-Based Nonlinear Filtering and Segmentation using High-Level Shading Languages I. Viola, A. Kanitsar, M. E. Gröller Institute of Computer Graphics.
Volume Visualization Acknowledgements: Torsten Möller (SFU)
VOTS VOlume doTS as Point-based Representation of Volumetric Data S. Grimm, S. Bruckner, A. Kanitsar and E. Gröller Institute of Computer Graphics and.
Michael Burns Martin Haidacher Eduard Gröller Ivan ViolaWolfgang Wein.
Ultrasound Visualization Pipeline A Survey
Current Visualization Software NCL, Amira, and OpenDX By Drew Brumm.
WPI Center for Research in Exploratory Data and Information Analysis From Data to Knowledge: Exploring Industrial, Scientific, and Commercial Databases.
Web-based Portal for Discovery, Retrieval and Visualization of Earth Science Datasets in Grid Environment Zhenping (Jane) Liu.
Ultrasound Visualization Pipeline A Survey
Erdem Alpay Ala Nawaiseh. Why Shadows? Real world has shadows More control of the game’s feel  dramatic effects  spooky effects Without shadows the.
I NTERACTIVE V OLUME R ENDERING FOR V IRTUAL C OLONOSCOPY IEEE Proceedings of Visualization, Phoenix, U.S.A., Oct. 1997, pp. 433 – 436 Presented.
Marching Cubes: A High Resolution 3D Surface Construction Algorithm
Volume Graphics (graduate course) Bong-Soo Sohn School of Computer Science and Engineering Chung-Ang University.
Prefiltered Anti-Aliasing on Parallel Hardware
Technology and Historical Overview. Introduction to 3d Computer Graphics  3D computer graphics is the science, study, and method of projecting a mathematical.
3D Slicer: A Free & Open Source Platform For Medical Image Analysis and Visualization Brigham and Women’s Hospital.
Volume Graphics What’s in the cards…. The Panelists Kwan-Liu Ma.
Visual Analysis of Hierarchical Management Data Zhao Geng 1, Gaurav Gathania 2, Robert S.Laramee 1 and ZhenMin Peng 1 1 Visual Computing Group, Computer.
Introduction Surgical training environments as well as pre- and intra-operative planning environments require physics-based simulation systems to achieve.
Software Tools for Visualization of Multimodality Brain Data for Language Mapping Andrew V. Poliakov, PhD 1, Eider B. Moore 1, David P. Corina, PhD 2,
Readability Metrics for Network Visualization Cody Dunne and Ben Shneiderman Human-Computer Interaction Lab & Department of Computer Science University.
Adaptively Sampled Distance Fields Representing Shape for Computer Graphics Ronald N. Perry and Sarah F. Frisken Mitsubishi Electric Research Laboratories.
Robert S. Laramee 1 Bob's Vision for a Programme of Research with CIPHER: Topics, Outputs, and Grants Robert S. Laramee Department.
Illustrative Visualization of Segmented Human Cardiac Anatomy Based on Context-Preserving Model Kuanquan Wang, Lei Zhang, Changqing Gai, Wangmeng Zuo.
Advanced Computer Graphics 台科大 資管系 楊傳凱 助理教授. Course Web Site: advanced_cg.html.
Evaluation of a Bricked Volume Layout for a Medical Workstation based on Java Peter Kohlmann, Stefan Bruckner, Armin Kanitsar, M. Eduard Gröller Institute.
3D Volume Visualization. Volume Graphics  Maintains a 3D image representation that is close to the underlying fully-3D object (but discrete)  경계표면 (Boundary.
GEON2 and OpenEarth Framework (OEF) Bradley Wallet School of Geology and Geophysics, University of Oklahoma
Exploded Views for Volume Data Stefan Bruckner and M. Eduard Gröller IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, 2006.
VAPoR: A Discovery Environment for Terascale Scientific Data Sets Alan Norton & John Clyne National Center for Atmospheric Research Scientific Computing.
Authors: I. Viola, A. Kanitsar, M. Gr ö ler Institute of Computer Graphics and Algorithms Vienna University of Technology, Austria Importance Driven Volume.
Adding Force Feedback to Graphics Systems: Issues and Solutions William Mark, Scott Randolph, Mark Finch, James Van Verth and Russell Taylor Proceedings.
CHAPTER 5 CONTOURING. 5.3 CONTOURING Fig 5.7. Relationship between color banding and contouring Contour line (isoline): the same scalar value, or isovalue.
Visual Parameter Exploration in GPU Shader Space Peter Mindek 1, Stefan Bruckner 2,1, Peter Rautek 3, and M. Eduard Gröller 1 1 Institute of Computer Graphics.
Yizhou Yu Texture-Mapping Real Scenes from Photographs Yizhou Yu Computer Science Division University of California at Berkeley Yizhou Yu Computer Science.
Seminar (mit Bachelorarbeit) Seminar aus Computergraphik WS 2008 Organizers: Muddassir Malik, Erald Vuçini Teaching staff: Peter Rautek,
Discontinuous Displacement Mapping for Volume Graphics, Volume Graphics 2006, July 30, Boston, MA Discontinuous Displacement Mapping for Volume Graphics.
Learning Game and Simulation Design through Multilayer Synchronous Collaboration in a Virtual Reality Environment A Pre-Prospectus Proposal Lewis F. Jones.
Non-Photorealistic Rendering FORMS. Model dependent Threshold dependent View dependent Outline form of the object Interior form of the object Boundary.
Biomedical Informatics Research Network The BIRN Architecture: An Overview Jeffrey S. Grethe, BIRN-CC 10/9/02 BIRN All Hands Meeting 2002.
Seminar (mit Bachelorarbeit) Seminar aus Computergraphik WS 2009 Organizers: Muddassir Malik, M. Eduard Gröller Teaching staff: Andrej.
Contextual Snapshots: Enriched Visualization with Interactive Spatial Annotations Peter Mindek 1, Stefan Bruckner 2,1 and M. Eduard Gröller 1 1 Institute.
GPU, How It Works? GRAPHICS PROCESSING UNITS Hidden Surfaces Determine which surfaces should be displayed Texturing Modify each pixel colour for added.
Using Cyberinfrastructure to Study the Earth’s Climate and Air Quality Don Wuebbles Department of Atmospheric Sciences University of Illinois, Urbana-Champaign.
IllustraSound Illustrative Visualization meets Ultrasound Veronika Solteszova Åsmund Birkeland Paolo Angelelli.
An Open Source Platform for Registration, Segmentation, Quantitative Analysis, and Visualization of Biomedical Image Data 3D Slicer About 3D Slicer Segmentation.
Visual Information Processing. Human Perception V.S. Machine Perception  Human perception: pictorial information improvement for human interpretation.
Hair Modelling, Animation, and Rendering
Scientific Reproducibility using the Provenance for Healthcare and Clinical Research Framework Satya S. Sahoo Collaborators/Co-Authors: Joshua Valdez,
Introduction Prof. Lizhuang Ma.
Illustrative Clipping of Volume Data
Dynamic Focus + Context for Volume Rendering
Texture for Volume Character Animation Peiyi Shen and Philip Willis
Texture Classification of Normal Tissues in Computed Tomography
Introduction to Visual Analytics
Introduction Prof. Lizhuang Ma.
Presentation transcript:

Volume Data Analysis and Visualization Stefan Bruckner Department of Informatics University of Bergen

VISUAL KNOWLEDGE DISCOVERY make sense of mountains of data A Data-Driven World … EARTH SCIENCES MEDICINEBIOLOGYENGINEERING

Mission Statement Enable visual knowledge discovery in large spatial data collections 1 3 2

VOLUME DATA ANALYSIS AND VISUALIZATION Selected Success Stories

Volume Analysis Identification of features in volumetric data, e.g. seismic volumes, medical imaging data, etc. [1-5] – Find regions in parameter space which correspond to distinct spatial structures delineating blood vessels in angiographyremoving artifacts in industrial CT

Volume Exploration Finding of patterns in large spatial data collections [8-10] – Interactive tools for visual exploration, navigation, and analysis – Categorization of the output space using spatial similarity measures – Applications: fluid simulation, neurobiology, medicine, etc.

Smart Interaction AngioVis: advanced visualization for improved diagnosis of vascular decease [11-13] – Next-generation radiology workstation, in daily clinical use at the Vienna General Hospital LiveSync: synchronized interaction with 2D and 3D images in medical workstations [14-17] – Integrated into AFGA HealthCare software, several granted patents

Illustrative Visualization Interactive presentation of complex 3D datasets in an easily-understandable way based on illustration techniques [18-25] – GPU-based methods for generating cutaway views, exploded views, stylized shading, etc. – VolumeShop software framework: rapid-prototyping toolkit for volume visualization & remote rendering

Real-Time Rendering Real-time realistic volume visualization from live 4D ultrasound data [26-28] – High-quality rendering with at a fraction of the cost of previous methods – Research and technology transfer project with GE Healthcare, available on Voluson US scanners

References (1) [1] M. Haidacher, S. Bruckner, A. Kanitsar, and M. E. Gröller, “Information-based transfer functions for multimodal visualization,” in Proceedings of Visual Computing for Biomedicine 2008, pp. 101–108, [2] M. Haidacher, D. Patel, S. Bruckner, A. Kanitsar, and M. E. Gröller, “Volume visualization based on statistical transfer-function spaces,” in Proceedings of IEEE Pacific Visualization 2010, pp. 17–24, [3] D. Patel, S. Bruckner, I. Viola, and M. E. Gröller, “Seismic volume visualization for horizon extraction,” in Proceedings of IEEE Pacific Visualization 2010, pp. 73–80, [4] S. Bruckner and T. Möller, “Isosurface similarity maps,” Computer Graphics Forum, vol. 29, no. 3, pp. 773–782, EUROVIS 2010 BEST PAPER AWARD. [5] M. Haidacher, S. Bruckner, and M. E. Gröller, “Volume analysis using multimodal surface similarity,” IEEE Transactions on Visualization and Computer Graphics, vol. 17, no. 6, pp. 1969–1978, [6] S. Bruckner, V. Šoltészová, M. Gröller, J. Hladuvka, K. Bühler, J. Y. Yu, and B. J. Dickson, “BrainGazer – Visual queries for neurobiology research,” IEEE Transactions on Visualization and Computer Graphics, vol. 15, no. 6, pp. 1497–1504, [7] S. Bruckner and M. E. Gröller, “Instant volume visualization using maximum intensity difference accumulation,” Computer Graphics Forum, vol. 28, no. 3, pp. 775–782, [8] S. Bruckner and T. Möller, “Result-driven exploration of simulation parameter spaces for visual effects design,” IEEE Transactions on Visualization and Computer Graphics, vol. 16, no. 6, pp. 1467–1475, [9] P. Mindek, S. Bruckner, M. E. Gröller, “Contextual Snapshots: Enriched Visualization with Interactive Spatial Annotations,” in Proceedings of the Spring Conference on Computer Graphics SCCG 2013 BEST PAPER AWARD. [10] J. Schmidt, M. E. Gröller, and S. Bruckner, “VAICo: Visual Analysis for Image Comparison,“ IEEE Transactions on Visualization and Computer Graphics, vol. 19, no. 6, pp , [11] G. Mistelbauer, H. Bouzari, R. Schernthaner, I. Baclija, A. Köchl, S. Bruckner, M. Sramek, M. E. Gröller, “Smart Super Views – A Knowledge-Assisted Interface for Medical Visualization,” in Proceedings of IEEE VAST 2012, pp. 163–172, [12] G. Mistelbauer, A. Morar, A. Varchola, R. Schernthaner, I. Baclija, A. Köchl, A. Kanitsar, S. Bruckner, M. E. Gröller, “Vessel Visualization using Curvicircular Feature Aggregation,“ Computer Graphics Forum, vol. 32, no. 3, pp. 231–240, [13] T. Auzinger, G. Mistelbauer, I. Baclija, R. Schernthaner, A. Köchl, M. Wimmer, M. E. Gröller, and S. Bruckner, “Vessel Visualization using Curved Surface Reformation,“ IEEE Transactions on Visualization and Computer Graphics, vol. 19, no. 6, pp. 2858–2867, [14] P. Kohlmann, S. Bruckner, A. Kanitsar, and M. E. Gröller, “LiveSync: Deformed viewing spheres for knowledge-based navigation,” IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1544–1551, 2007.

References (2) [15] S. Bruckner, P. Kohlmann, A. Kanitsar, and M. E. Gröller, “Integrating volume visualization techniques into medical applications,” in Proceedings of the International Symposium on Biomedical Imaging 2008, pp. 820–823, [16] P. Kohlmann, S. Bruckner, A. Kanitsar, and M. E. Gröller, “LiveSync++: Enhancements of an interaction metaphor,” in Proceedings of Graphics Interface 2008, pp. 81–88, [17] P. Kohlmann, S. Bruckner, A. Kanitsar, and M. E. Gröller, “Contextual picking of volumetric structures,” in Proceedings of the IEEE Pacific Visualization 2009, pp. 185–192, [18] S. Bruckner and M. E. Gröller, “VolumeShop: An interactive system for direct volume illustration,” in Proceedings of IEEE Visualization 2005, pp. 671–678, [19] S. Bruckner, S. Grimm, A. Kanitsar, and M. E. Gröller, “Illustrative context-preserving exploration of volume data,” IEEE Transactions on Visualization and Computer Graphics, vol. 12, no. 6, pp. 1559–1569, [20] S. Bruckner and M. E. Gröller, “Exploded views for volume data,” IEEE Transactions on Visualization and Computer Graphics, vol. 12, no. 5, pp. 1077–1084, [21] S. Bruckner and M. E. Gröller, “Style transfer functions for illustrative volume rendering,” Computer Graphics Forum, vol. 26, no. 3, pp. 715–724, EUROGRAPHICS RD BEST PAPER AWARD. [22] P. Rautek, S. Bruckner, and M. E. Gröller, “Semantic layers for illustrative volume rendering,” IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1336–1343, [23] S. Bruckner and M. E. Gröller, “Enhancing depth-perception with flexible volumetric halos,” IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1344–1351, [24] P. Rautek, S. Bruckner, and M. E. Gröller, “Interaction-dependent semantics for illustrative volume rendering,” Computer Graphics Forum, vol. 27, no. 3, pp. 847–854, [25] S. Bruckner, P. Rautek, I. Viola, M. Roberts, M. C. Sousa, and M. E. Gröller, “Hybrid visibility compositing and masking for illustrative rendering,” Computers & Graphics, vol. 34, no. 4, pp. 361–369, [26] V. Šoltészová, D. Patel, S. Bruckner, and I. Viola, “A multidirectional occlusion shading model for direct volume rendering,” Computer Graphics Forum, vol. 29, no. 3, pp. 883–891, [27] T. Ropinski, S. Diepenbrock, S. Bruckner, K. Hinrichs, and M. E. Gröller, “Unified Boundary-Aware Texturing for Interactive Volume Rendering,” IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 11, pp. 1942–1955, [28] D. Patel, V. Šoltészová, J. M. Nordbotten, and S. Bruckner, “Instant Convolution Shadows for Volumetric Detail Mapping,“ ACM Transactions on Graphics, vol. 32, no. 5, pp. 154:1–154:18, 2013.