Universality in low Reynolds number flows: theory and applications Peter Wittwer Département de Physique Théorique Université de Genève.

Slides:



Advertisements
Similar presentations
Mechanics of Breathing II
Advertisements

Group-theoretical model of developed turbulence and renormalization of the Navier-Stokes equation V. L. Saveliev1 and M. A. Gorokhovski2 1. Institute.
Vortex instability and the onset of superfluid turbulence
Application of Fluid-Structure Interaction Algorithms to Seismic Analysis of Liquid Storage Tanks Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et.
Astrophysical Fluid Dynamics. Astrophysical Hydrodynamics i Lecturer: Rien van de Weijgaert a Room 186, phone 4086, b Office.
Stationary and time periodic solutions of the Navier-Stokes equations in exterior domains: a new approach to open problems Peter Wittwer University of.
Kalman Filtering, Theory and Practice Using Matlab Wang Hongmei
(In)Stabilities and Complementarity in AdS/CFT Eliezer Rabinovici The Hebrew University, Jerusalem Based on works with J.L.F Barbon Based on work with.
Thermally Stable Boundary Layers Emily Moder – Grand Energy Challenges.
1 MECH 221 FLUID MECHANICS (Fall 06/07) Tutorial 6 FLUID KINETMATICS.
1 Physics of turbulence muna Al_khaswneh Dr.Ahmad Al-salaymeh.
1 Minihap Project data Title: Enhanced design and manufacturing of mini- hydraulic products Project type: GROWTH project of the EU Reference: GDR
Exact solutions of the Navier-Stokes equations having steady vortex structures M. Z. Bazant † and H. K. Moffatt ‡ † Department of Mathematics, M IT ‡ DAMTP,
23-28 September 2003 Basic Processes in Turbulent Plasmas Forecasting asymptotic states of a Galerkin approximation of 2D MHD equations Forecasting asymptotic.
1/36 Gridless Method for Solving Moving Boundary Problems Wang Hong Department of Mathematical Information Technology University of Jyväskyklä
Atmospheric turbulence Richard Perkins Laboratoire de Mécanique des Fluides et d’Acoustique Université de Lyon CNRS – EC Lyon – INSA Lyon – UCBL 36, avenue.
6/29/20151 Stability of Parallel Flows. 6/29/20152 Analysis by LINEAR STABILITY ANALYSIS. l Transitions as Re increases 0 < Re < 47: Steady 2D wake Re.
Interactions Reference books: Quantum mechanics: - Mathews: Introduction to Quantum Mechanics - Cohen-Tannoudji, Diu and Laloë: Mécanique Quantique Statistical.
LES of Turbulent Flows: Lecture 3 (ME EN )
Separated Flows Wakes and Cavities Olivier Cadot, Equipe Dynamique des Fluides et Acoustique de l’Unité de Mécanique, ENSTA, Palaiseau. Overview Short.
1 Fanpar Project data Title: Porting and demonstration of a parallel software for enhanced aerodynamic and acoustic design of axial and centrifugal fans.
Weakly nonlocal fluid mechanics Peter Ván Budapest University of Technology and Economics, Department of Chemical Physics –One component fluid mechanics.
Conservation Laws for Continua
Solutions stationnaires des équations de Navier-Stokes en domaines extérieurs dans le régime des faibles nombres de Reynolds Peter Wittwer Département.
Natural Convection in free flow: Boussinesq fluid in a square cavity
Welcome to the Applied Analysis specialization of the Master Program Mathematical Sciences Wednesday, February 12, 2014 Yuri Kuznetsov, coordinator AA.
A Fast Simulation Method Using Overlapping Grids for Interactions between Smoke and Rigid Objects Yoshinori Dobashi (Hokkaido University) Tsuyoshi Yamamoto.
60th Annual Meeting Division of Fluid Dynamics A multiscale approach to study the stability of long waves in near-parallel flows S. Scarsoglio #, D.Tordella.
LBM: Approximate Invariant Manifolds and Stability Alexander Gorban (Leicester) Tuesday 07 September 2010, 16:50-17:30 Seminar Room 1, Newton Institute.
A tour of course. Physics Course Objectives: At the end of this course the students will be able to: - Discuss science as a body of knowledge.
What is thermodynamics and what is it for? I. Equilibrium and non-equilibrium in discrete systems Peter Ván HAS, RIPNP, Department of Theoretical Physics.
1.5 Infinite Limits Objectives: -Students will determine infinite limits from the left and from the right -Students will find and sketch the vertical asymptotes.
59th Annual Meeting Division of Fluid Dynamics Initial-value problem for the two-dimensional growing wake S. Scarsoglio #, D.Tordella # and W. O. Criminale*
Wavy Vortex Flow A tale of chaos, symmetry and serendipity in a steady world Greg King University of Warwick (UK) Collaborators: Murray Rudman (CSIRO)
Sedimentation of a polydisperse non- Brownian suspension Krzysztof Sadlej IFT UW IPPT PAN, May 16 th 2007.
IIT-Madras, Momentum Transfer: July 2005-Dec 2005 Perturbation: Background n Algebraic n Differential Equations.
Tensor networks and the numerical study of quantum and classical systems on infinite lattices Román Orús School of Physical Sciences, The University of.
9/24/2014PHY 711 Fall Lecture 131 PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF Olin 103 Plan for Lecture 13: Finish reading.
Zuhal OZDEMIR, Mhamed SOULI
12th European Turbulence Conference Linear generation of multiple time scales by three-dimensional unstable perturbations S. Scarsoglio #, D.Tordella #
The Stability of Laminar Flows - 2
COMPUTATIONAL FLUID DYNAMICS (AE 2402) Presented by IRISH ANGELIN S AP/AERO.
Lecture #6 Ehsan Roohi Sharif University of Technology Aerospace Engineering Department 1.
© Fox, Pritchard, & McDonald Introduction to Fluid Mechanics Chapter 5 Introduction to Differential Analysis of Fluid Motion.
1 MULTIPHYSICS December 2009 Lille, FRANCE.
A Numerical Solution to the Flow Near an Infinite Rotating Disk White, Section MAE 5130: Viscous Flows December 12, 2006 Adam Linsenbardt.
CFD Study of the Development of Vortices on a Ring Wing
DROPS IN LOW REYNOLDS NUMBER FLOW Maria L. Ekiel-Jeżewska Eligiusz Wajnryb Institute of Fundamental Technological Research Polish Academy of Sciences,
The inclusion of fermions – J=1/2 particles
Transition to Tubulence in the Hartmann Layer A. Thess 1, D.Krasnov 1, E. Zienicke 1, O. Zikanov 2, T. Boeck 3 1-Ilmenau University of Technology 2-University.
11th European Turbulence Conference Temporal dynamics of small perturbations for a two-dimensional growing wake S. Scarsoglio #, D.Tordella # and W. O.
P. Meunier Institut de Recherche sur les Phénomènes Hors-Equilibre, Marseille, France Collaborators: X. Riedinger, N. Boulanger, S. Le Dizès, P. Billant.
An experimental study of bypass transition in plane Couette flow S. AMALFI, F. LAADHARI & J. F. SCOTT Laboratoire de Mécanique des Fluides et d’Acoustique.
11/22/2013PHY 711 Fall Lecture 341 PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF Olin 103 Plan for Lecture 34: Chapter 11.
Relaminarisation of turbulent stratified flow Bas van de Wiel Moene, Steeneveld, Holtslag.
Gravity effects to the Vacuum Bubbles Based on PRD74, (2006), PRD75, (2007), PRD77, (2008), arXiv: [hep-th] & works in preparation.
1 LES of Turbulent Flows: Lecture 7 (ME EN ) Prof. Rob Stoll Department of Mechanical Engineering University of Utah Spring 2011.
Stability Investigation of a Difference Scheme for Incompressible Navier—Stokes Equations D. Chibisov, V. Ganzha, E.W. Mayr, E.V. Vorozhtsov.
Higher Order Runge-Kutta Methods for Fluid Mechanics Problems Abhishek Mishra Graduate Student, Aerospace Engineering Course Presentation MATH 6646.
From: Hydraulic Loss of Finite Length Dividing Junctions
P M V Subbarao Professor Mechanical Engineering Department
Ariel Edery Bishop’s University
Fundamental principles of particle physics
Spectral and Algebraic Instabilities in Thin Keplerian Disks: I – Linear Theory Edward Liverts Michael Mond Yuri Shtemler.
P M V Subbarao Professor Mechanical Engineering Department
Introduction to Fluid Mechanics
Percolation Density Contours
John Drozd Colin Denniston
Class # 27 ME363 Spring /23/2018.
Introduction to Fluid Mechanics
Presentation transcript:

Universality in low Reynolds number flows: theory and applications Peter Wittwer Département de Physique Théorique Université de Genève

reading: R. P. Feynman, Vol. II G. K. Batchelor, An Introduction to Fluid Mechanics L. Landau, E. Lifchitz, Mécanique des fluides M. Van Dyke, An Album of Fluid Motion collaborations: Guillaume Van Baalen Frédéric Haldi Sebastian Bönisch Vincent Heuveline

─ Introduction to the problem ─ Asymptotic analysis ─ Applications

Exterior Flows

Navier-Stokes

Re=0.16

Re=1.54

Re=56.5

Re=118

Re=7000

Case of finite volume

Case of infinite volume, I

Case of infinite volume, II

Asymptotic analysis

Results (d=2)

Interpretation:

Results (d=3)

Two steps: ─ construct downstream asymptotics dynamical system invariant manifold theory renormalization group universality ─ determines asymptotics everywhere

Vorticity:

Vorticity equation

Fourier transform

Diagonalize

Stable and unstable modes

use contraction mapping principle

Large time asymptotics:

Two steps: ─ construct downstream asymptotics dynamical system invariant manifold theory renormalization group universality ─ determines asymptotics everywhere

Determines asymptotics everywhere:

Applications in collaboration with: Sebastian Bönisch Rolf Rannacher Vincent Heuveline Heidelberg & Karlsruhe

Adaptive boundary conditions

To second order:

Comparison with Experiment:

Cloud Microphysics and Climate M. B. Baker, SCIENCE, Vol. 276, 1997

Work in progress: d=2 case with lift (numerical) d=2 second order asymptotics (theory) d=3 (numerical) d=2, 3: free fall problem (numerical) d=3 case with rotation at infinity (theory; see P. Galdi (2005) for recent results) Other research groups: d=2 time periodic (theory)