Universality in low Reynolds number flows: theory and applications Peter Wittwer Département de Physique Théorique Université de Genève
reading: R. P. Feynman, Vol. II G. K. Batchelor, An Introduction to Fluid Mechanics L. Landau, E. Lifchitz, Mécanique des fluides M. Van Dyke, An Album of Fluid Motion collaborations: Guillaume Van Baalen Frédéric Haldi Sebastian Bönisch Vincent Heuveline
─ Introduction to the problem ─ Asymptotic analysis ─ Applications
Exterior Flows
Navier-Stokes
Re=0.16
Re=1.54
Re=56.5
Re=118
Re=7000
Case of finite volume
Case of infinite volume, I
Case of infinite volume, II
Asymptotic analysis
Results (d=2)
Interpretation:
Results (d=3)
Two steps: ─ construct downstream asymptotics dynamical system invariant manifold theory renormalization group universality ─ determines asymptotics everywhere
Vorticity:
Vorticity equation
Fourier transform
Diagonalize
Stable and unstable modes
use contraction mapping principle
Large time asymptotics:
Two steps: ─ construct downstream asymptotics dynamical system invariant manifold theory renormalization group universality ─ determines asymptotics everywhere
Determines asymptotics everywhere:
Applications in collaboration with: Sebastian Bönisch Rolf Rannacher Vincent Heuveline Heidelberg & Karlsruhe
Adaptive boundary conditions
To second order:
Comparison with Experiment:
Cloud Microphysics and Climate M. B. Baker, SCIENCE, Vol. 276, 1997
Work in progress: d=2 case with lift (numerical) d=2 second order asymptotics (theory) d=3 (numerical) d=2, 3: free fall problem (numerical) d=3 case with rotation at infinity (theory; see P. Galdi (2005) for recent results) Other research groups: d=2 time periodic (theory)