Current plan for e-VLBI demonstrations at iGrid2005 and SC2005 Yasuhiro Koyama *1, Tetsuro Kondo *1, Hiroshi Takeuchi *1, Moritaka Kimura, Masaki Hirabaru.

Slides:



Advertisements
Similar presentations
e-VLBI Deployments with Research Internet
Advertisements

The CVN Real Time Correlator Zhang Xiuzhong, Chen Zhong Shanghai Astronomical Observatory China 4th e-VLBI Workshop Sydney
Mark 6: design and status update VLBI Technical Meeting MIT Haystack Observatory Roger Cappallo Alan Whitney Chet Ruszczyk.
Laser Ranging Contributions to Earth Rotation Studies Richard S. Gross Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109–8099,
VLBI Standard Interface – Electronic (VSI-E) Protocol Fundamentals Chet Ruszczyk MIT Haystack Observatory.
Ongoing e-VLBI Developments with K5 VLBI System Hiroshi Takeuchi, Tetsuro Kondo, Yasuhiro Koyama, and Moritaka Kimura Kashima Space Research Center/NICT.
E-VLBI Development at Haystack Observatory Alan Whitney Chet Ruszczyk Kevin Dudevoir Jason SooHoo MIT Haystack Observatory 24 March 2006 EVN TOG meeting.
E-VLBI Development at Haystack Observatory Alan Whitney Chet Ruszczyk MIT Haystack Observatory 10 Jan 2006 IVS General Meeting Concepion, Chile.
Electronic Transmission of Very- Long Baseline Interferometry Data National Internet2 day, March 18, 2004 David LapsleyAlan Whitney MIT Haystack Observatory,
E-VLBI Development at Haystack Observatory 5 th Annual e-VLBI Workshop Haystack Observatory 20 September 2006 Alan R. Whitney Kevin Dudevoir Chester Ruszczyk.
Goals of a New VLBI Data System Low cost Based primarily on unmodified COTS components Modular, easily upgradeable Robust operation, low maintenance.
Current LBA Developments Chris Phillips CSIRO ATNF 13/7/2005.
E-VLBI developments with the K5 VLBI system Koyama Yasuhiro *1, Kondo Tetsuro *1, Kimura Moritaka *1, Takeuchi Hiroshi *1, and Masaki Hirabaru *2 *1 Kashima.
Masaki Hirabaru NICT The 3rd International HEP DataGrid Workshop August 26, 2004 Kyungpook National Univ., Daegu, Korea High Performance.
E-VLBI: Connecting the Global Array of Radio Telescopes through High-Speed Networks Participating U.S. organizations: MIT Haystack Observatory MIT Lincoln.
Developments for real-time software correlation e-VLBI Y. Koyama, T. Kondo, M. Kimura, M. Sekido, M. Hirabaru, and M. Harai Kashima Space Research Center,
E-VLBI Development Program at MIT Haystack Observatory Alan R. Whitney Chester A. Ruszczyk MIT Haystack Observatory 13 July 2005 e-VLBI Workshop Australia.
E-VLBI Software Suite & DRAGON Interoperability Chet Ruszczyk, Jason Soohoo.
E-VLBI at ≥ 1 Gbps -- “unlimited” networks? Tasso Tzioumis Australia Telescope National Facility (ATNF) 4 November 2008.
The Mark 5B VLBI Data System Alan Whitney for the Mark 5 team MIT Haystack Observatory 20 September th e-VLBI Workshop Haystack Observatory.
VDIF (VLBI Data Interchange Format) as a common data format in e-VLBI era. M. Sekido (NICT) M.Kettenis(ATNF), C.Phillips(JIVE), A.Whitney(MIT/Haystack),
Masaki Hirabaru Internet Architecture Group GL Meeting March 19, 2004 High Performance Data transfer on High Bandwidth-Delay Product Networks.
Chapter 1. Introduction. By Sanghyun Ahn, Deot. Of Computer Science and Statistics, University of Seoul A Brief Networking History §Internet – started.
Kondo, T. *1*2 and T. Hobiger *2 Kondo, T. *1*2.
Geodetic Networks: The Supporting Framework Terrestrial Reference Frame is ‘Critical Infrastructure’ for all Earth science research and applications. Global.
e-VLBI International Research Networking Needs Alan R. Whitney MIT Haystack Observatory.
e-VLBI: Overview and Update Alan R. Whitney MIT Haystack Observatory.
Radio Astronomy Applications Group Kashima Space Research Center National Institute of Information and Communications Technology EGU2005 GI1-1TH5P-0026.
1 Masaki Hirabaru and Yasuhiro Koyama APEC-TEL APGrid Workshop September 6, 2005 e-VLBI: Science over High-Performance Networks.
E-VLBI over TransPAC Masaki HirabaruDavid LapsleyYasuhiro KoyamaAlan Whitney Communications Research Laboratory, Japan MIT Haystack Observatory, USA Communications.
High Data Rate Transfer for HEP and VLBI Ralph Spencer, Richard Hughes-Jones and Simon Casey The University of Manchester Netwrokshop33 March 2005.
Hirabaru, Koyama, and Kimura NICT APAN NOC Meeting January 20, 2005 e-VLBI updates.
High Bandwidth Data Acquisition and Network Streaming in VLBI Jan Wagner, Guifré Molera et al. TKK / Metsähovi Radio Observatory.
EVN-NREN meeting, Schiphol, , A. Szomoru, JIVE Recent eVLBI developments at JIVE Arpad Szomoru Joint Institute for VLBI in Europe.
Radio Astronomy Applications Group Kashima Space Research Center National Institute of Information and Communications Technology EGU2005 GI3-1TH5P-0057.
Example: Sorting on Distributed Computing Environment Apr 20,
VLBI/eVLBI with the 305-m Arecibo Radio Telescope Chris Salter Tapasi Ghosh Emmanuel Momjian Arun Venkataraman Jon Hagen.
1 Gbps Disk-Based VLBI Observation for Future East Asia VLBI Observations Kiyoaki Wajima 18 March 2009 동아시아 VLBI 워크샵 Yamaguchi University Introduction.
E-VLBI: Creating a Global Radio Telescope via High-Speed Networks Alan R. Whitney MIT Haystack Observatory SLAC Data Management Workshop 17 March 2004.
E-VLBI and End-to-End Performance Masaki HirabaruYasuhiro KoyamaTetsuro Kondo NICT KoganeiNICT Kashima
Masaki Hirabaru Tsukuba WAN Symposium 2005 March 8, 2005 e-VLBI and End-to-End Performance over Global Research Internet.
E-VLBI – Creating a Global Radio-Telescope Array via High-Speed Networks Alan R. Whitney MIT Haystack Observatory Internet2 Fall Member Meeting San Diego,
E-VLBI Activity in NICT National Institute of Information and Communications Technology (NICT) Kashima Space Research Center M. Sekido, 、 Y. Koyama, M.
VTP: VDIF Transport Protocol Chris Phillips, Alan Whitney, Mamoru Sekido & Mark Kettenis November 2011.
Introduction VLBI_UDP is an application being developed to transfer VLBI data using the UDP protocol. Initially developed by Richard Hughes- Jones for.
Masaki Hirabaru Network Performance Measurement and Monitoring APAN Conference 2005 in Bangkok January 27, 2005 Advanced TCP Performance.
Masaki Hirabaru NICT Koganei 3rd e-VLBI Workshop October 6, 2004 Makuhari, Japan Performance Measurement on Large Bandwidth-Delay Product.
E-VLBI Trials Ny-Alesund to Haystack (VSI-E non real-time) C. Ruszczyk, J. Soohoo, A. Whitney [1], R. Hanssen, F. Koppang [2], O. Schjelderup, H. Eidnes.
76-m Lovell Telescope Jodrell Bank, UK Even big telescopes see no more detail than the naked eye High bandwidth data transfer - the future of European.
Masaki Hirabaru NICT APAN JP NOC Meeting August 31, 2004 e-VLBI for SC2004 bwctl experiment with Internet2.
APAN eScience Workshop Introduction Chris Elvidge U.S. Department of Commerce, National Oceanic and Atmospheric Administration National Environmental Satellite.
E. Momjian, T. Ghosh, C. Salter, & A. Venkataraman (NAIC-Arecibo Observatory) eVLBI with the 305 m Arecibo Radio Telescope ABSTRACT Using the newly acquired.
Renesas Electronics America Inc. © 2010 Renesas Electronics America Inc. All rights reserved. Overview of Ethernet Networking A Rev /31/2011.
Geodetic Networks: The Supporting Framework Terrestrial Reference Frame is ‘Critical Infrastructure’ for all Earth science research and applications. Global.
E-VLBI: A Brief Overview Alan R. Whitney MIT Haystack Observatory.
Possible eVLBI connection between Eastern Asian Observatories Noriyuki KAWAGUCHI National Astronomical Observatory, Japan eVLBI Workshop
1 Masaki Hirabaru and Yasuhiro Koyama PFLDnet 2006 Febrary 2, 2006 International e-VLBI Experience.
Radio Astronomy Applications Group Kashima Space Research Center IUGG2003, Sapporo (C) ISAS Orbit Determination of The NOZOMI Spacecraft using Differential.
Masaki Hirabaru and Yasuhiro Koyama NICT APAN NOC Meeting November 22, 2004 Report on e-VLBI Demonstration in SC2004.
Data-Acquisition and Transport – Looking Forward to 2010 and Beyond Definition of ‘Data-Acquisition and Transport’ Continuum of Transport Options Limitations.
Potential VLBI2010 Data System Alan Whitney MIT Haystack Observatory Mikael Taveniku XCube Systems 24 Feb 2011 East Coast VLBI meeting Haystack Observatory.
SA1: second year overview Arpad Szomoru JIVE January 30EXPReS Board Meeting, Utrecht, the Netherlands: SA1Slide #2 Outline Accomplishments in 2007.
Broadband Interfacing eMerlin-JIVE (1-10Gbps) Onsala-Jodrell Bank (
E-VLBI – Creating a Global Radio-Telescope Array via High-Speed Networks Alan R. Whitney MIT Haystack Observatory Optical Waves: Who Needs Them and Why?
What is FABRIC? Future Arrays of Broadband Radio-telescopes on Internet Computing Huib Jan van Langevelde, JIVE Dwingeloo.
e-VLBI: Creating a Global Radio Telescope via High-Speed Networks
Haystack Geodesy Program and Technical Development
Alan R. Whitney MIT Haystack Observatory
e-VLBI Deployments with Research Internet
The First Implementation of RTP Framing for e-VLBI
Presentation transcript:

Current plan for e-VLBI demonstrations at iGrid2005 and SC2005 Yasuhiro Koyama *1, Tetsuro Kondo *1, Hiroshi Takeuchi *1, Moritaka Kimura, Masaki Hirabaru *1, Jason SooHoo *2, Kevin Dudevoir *2, Chet Ruszczyk *2, and Alan Whitney *2 *1 National Institute of Information and Communications Technology (NICT) *2 MIT Haystack Observatory

Contents  Introduction  e-VLBI demonstrations in the past – SC2004 – JGNII Symposium 2004 in Osaka  Current e-VLBI demonstration plan for iGrid2005 and SC2005

What is e-VLBI? VLBI=Very Long Baseline Interferometry Radio Telescope Correlator Network Conventional VLBI e-VLBI Shipping Data Media (Tapes/Disks)

 Geophysics and Plate Tectonics VLBI Applications (1)  0.5 mm/year  0.3 mm/year 1.3  0.5 mm/year Kauai Fairbanks Kashima Kashima-Kauai Baseline Length Fairbanks-Kauai Baseline Length Kashima-Fairbanks Baseline Length

VLBI Applications (2) Halca ( Muses-B ) NGC4261 Radio Telescope Satellite ‘Halca’ and its images Earth Orientation Parameters  Radio Astronomy : High Resolution Imaging, Astro-dynamics  Reference Frame : Celestial / Terrestrial Reference Frame  Earth Orientation Parameters, Dynamics of Earth’s Inner Core

 Observing Bandwidth  Data rate  (Precision of Time Delay) -1  (SNR) 1/2  Wave Length / Baseline Length  Angular Resolution  Baseline Length  (EOP Precision) -1 VLBI - Characteristics Faster Data Rate = Higher Sensitivity Longer Distance = Better Results

Why e-VLBI?  Currently it takes > 2 weeks to process (shipping + processing)  If it become 2 hours, it will improve accuracy of – satellite positioning and navigation – real-time orbit determination of satellites and spacecrafts  It potentially expands correlation/observation capacity – Currently ~16 stations with hardware correlator – Easy scalability with PC/distributed software correlator – No Recording Speed Limit with real-time correlation

e-VLBI System Developments at NICT K5 system ADS1000 (1024Msample/sec 1ch 1bit or 2bits) ADS2000 (64Msample/ch·sec, 16ch, 1bit or 2bits) IP-VLBI Board (~16Msample/ch·sec, ~4ch, ~8bits) PC : Data Acquisition Correlation VSI Correlator other DAS Internet PC-VSI Board (Supports VSI-H specifications) VSI

CPU array for Software Correlation Correlation Master Table Client PCs Linux/FreeBSD Clients Server Master Server

Mark 5 VLBI Disk-Based Data System (MIT Haystack Observatory) 1 Gbps continuous recording/playback to/from set of 8 inexpensive (ATA) disks Developed at MIT Haystack Observatory with multi-institutional support Mostly COTS components Two removable ‘8-pack’ disk modules in single 5U chassis With currently available 200GB disks – capacity of single ‘8-pack’ 1.6TB; expected to increase to 2.5TB by early 2003 at cost of ~$1/GB GigE connection for real-time and quasi-real-time e-VLBI operations Inexpensive: <$20K ~20 Mark 5 systems now installed at stations and correlators

e-VLBI demonstrations at SC2004 Pittsburg, USA  Quasi real-time e-VLBI at 256Mbps (4 stations) – pre-recorded data were transferred to Haystack Observatory and processed by using Mark 4 correlator  Real-time e-VLBI at 512Mbps (Westford-GGAO) Kashima (Japan) Westford (MA, USA) GGAO (MD, USA) Onsala (Sweden)

Real-time e-VLBI demo at SC2004 Bossnet DRAGON Haystack : Correlator Westford (Mark 5) Goddard GGAO (Mark 5) Pittsburg Convention Center 512 Mbps

JGNII Symposium 2005 in Osaka Osaka, Japan  Run a program at Kashima and Haystack to generate fake data  Data were transferred to Osaka in real-time and the data were processed for cross correlation processing with distributed software correlator program MIT Haystack NICT Kashima Abilene (10G) JGN II Int’l (10G) Tokyo JGN II (1G/10G) 1G/2.5G JGN II (10G) Osaka Venue 10G #1 #2 #3 #4 GEN-AGEN-B A B AB TT SX T x4 Raid ファイバー チャンネル LCD NE (Network Emulator) NE T x4 SX x2 ファイバー チャンネル TT LCD Measure-BMeasure-A

Two Modes of Operation for e-VLBI (1)  Quasi real-time e-VLBI – Data buffering (hard disks) at observing sites – Data transfer after a series of observations – Correlation processing after data transfer – Easy enough Operational in global sessions over shared IP networks (2003~) Rapid turn-around UT1-UTC estimation (~4.5 hours, June 2004) Huygens spacecraft tracking during decent to Titan (January 2005) – Better than tape-based VLBI with a standpoint of latency – Will not improve sensitivity over tape-based VLBI

Two Modes of Operation for e-VLBI (2)  Real-time e-VLBI – No data buffering at observing sites – Correlation processing at the sane time with observations – Possibility to break sensitivity barrier – Operational with local/domestic ATM networks Key Stone Project GALAXY Project 2000~ – Still challenging with shared IP networks over long distance – Standardization of the data transfer protocol required if heterogeneous systems are used  VSI-E VSI = VLBI Standard Interface (Versatile Scientific Interface) VSI-H : Hardware VSI-S : Software VSI-E : e-VLBI protocol

VSI-E  Purpose: – To specify standardized e-VLBI data formats and transmission protocols that allow data exchange between heterogeneous VLBI data systems  Characteristics: – Based on standard RTP/RTCP high-level protocols – Allows choice of IP transport protocols (TCP-IP, UDP, FAST, etc.) – Scalable Implementation; supports up to 100Gbps – Ability to transport individual data-channel streams as individual packet streams; potentially useful for distributed correlators – Ability to make use of multicasting to transport data and/or control information in an efficient manner  Status – Draft VSI-E specification completed January 2004 – Prototype VSI-E prototype implementation Nov 2004 – Practical implementation for K5 and Mark 5 now is progress – Plan to use VSI-E in real-time demo at SC05, Nov 05

VSI-E Architecture

Plan for iGrid2005 and SC2005  Target : real-time e-VLBI with K5 and Mark 5 systems  Telescopes : Kashima, Westford, Onsala  Data Rate : 256 Mbps or 512 Mbps vtp (sender) vtp (receiver) K5Mark 5 GGAO Kashima Westford Correlator Haystack Observatory VSI-E