11.8 Polar Equations of Conic Sections (skip 11.7)

Slides:



Advertisements
Similar presentations
A New Look at Conic Sections
Advertisements

Conics Review Your last test of the year! Study Hard!
10.1 Parabolas.
Section 11.6 – Conic Sections
Parabolas $ $300 $300 $ $ $ $ $ $ $ $ $ $ $ $ $ $100.
Intro to Conic Sections. It all depends on how you slice it! Start with a cone:
Conic Sections Parabola Ellipse Hyperbola
11.4 The Parabola. Parabola: the set of all points P in a plane that are equidistant from a fixed line and a fixed point not on the line. (directrix)
Unit 1 – Conic Sections Section 1.3 – The Parabola Calculator Required Vertex: (h, k) Opens Left/RightOpens Up/Down Vertex: (h, k) Focus: Directrix: Axis.
ESSENTIAL CALCULUS CH09 Parametric equations and polar coordinates.
Ch. 9 Objective: Understand and identify basic characteristics of conics. Conic section (conic): What you get (the intersection)when you cross a.
Equations of Ellipses and Hyperbolas
Introduction to Parabolas SPI Graph conic sections (circles, parabolas, ellipses and hyperbolas) and understand the relationship between the.
What is the standard form of a parabola who has a focus of ( 1,5) and a directrix of y=11.
Review Day! Hyperbolas, Parabolas, and Conics. What conic is represented by this definition: The set of all points in a plane such that the difference.
Conic Sections in Polar Coordinates Lesson Definition of Parabola Set of points equal distance from a point and a line  Point is the focus 
Section 11.7 – Conics in Polar Coordinates If e 1, the conic is a hyperbola. The ratio of the distance from a fixed point (focus) to a point on the conic.
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
50 Miscellaneous Parabolas Hyperbolas Ellipses Circles
Conics This presentation was written by Rebecca Hoffman Retrieved from McEachern High School.
Chapter 10.5 Conic Sections. Def: The equation of a conic section is given by: Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0 Where: A, B, C, D, E and F are not.
Polar form of Conic Sections
Circles – An Introduction SPI Graph conic sections (circles, parabolas, ellipses and hyperbolas) and understand the relationship between the.
Conic Sections Advanced Geometry Conic Sections Lesson 2.
Algebra Conic Section Review. Review Conic Section 1. Why is this section called conic section? 2. Review equation of each conic section A summary of.
EXAMPLE 3 Write an equation of a translated parabola Write an equation of the parabola whose vertex is at (–2, 3) and whose focus is at (–4, 3). SOLUTION.
Conic Sections in Polar Coordinates
Conic Sections Curves with second degree Equations.
Barnett/Ziegler/Byleen College Algebra, 6th Edition
What is a hyperbola? Do Now: Define the literary term hyperbole.
Circles Ellipse Parabolas Hyperbolas
EXAMPLE 3 Write an equation of a translated parabola
Advanced Geometry Conic Sections Lesson 3
Conic Sections The Parabola. Introduction Consider a ___________ being intersected with a __________.
Conics This presentation was written by Rebecca Hoffman.
Find the distance between (-4, 2) and (6, -3). Find the midpoint of the segment connecting (3, -2) and (4, 5).
Warm Up What is a vertex of a parabola? What is an asymptote?
Polar Equations of Conics. Directrix is perpendicular to the polar axis at a distance p units to the left of the pole Directrix is perpendicular to the.
Polar Equation of Conics -- D eo. An Alternative Definition of Conics Let L be a fixed line (the directrix); let F be a fixed point (the focus) not.
Chapter 11 Review. RULES: - Groups of 4 – your partner is to your left/right - One partner team will be X and the other partner team will be O - You have.
Distance The distance between any two points P and Q is written PQ. Find PQ if P is (9, 1) and Q is (2, -1)
Equation of a Parabola. Do Now  What is the distance formula?  How do you measure the distance from a point to a line?
Chapter 10 – Conic Sections 1) Circles 2) Parabolas 3) Ellipses 4) Hyperbolas.
INTRO TO CONIC SECTIONS. IT ALL DEPENDS ON HOW YOU SLICE IT! Start with a cone:
10.1 Identifying the Conics. Ex 1) Graph xy = 4 Solve for y: Make a table: xy ½ ½ Doesn’t touch y -axis Doesn’t touch x -axis.
Conic Sections Practice. Find the equation of the conic section using the given information.
Fri 4/22 Lesson 10 – 6 Learning Objective: To translate conics Hw: Worksheet (Graphs)
Conics Name the vertex and the distance from the vertex to the focus of the equation (y+4) 2 = -16(x-1) Question:
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
Chapter 11 Review HW: Pg 592 Chapter Test # 1-8,
Warm Up circle hyperbola circle
Homework Log Wed 4/27 Lesson Rev Learning Objective:
PC 11.4 Translations & Rotations of Conics
Graph and Write Equations of Parabolas
Vertices {image} , Foci {image} Vertices (0, 0), Foci {image}
Eccentricity Notes.
Write a polar equation in r and {image} of a hyperbola with the focus at the origin, with the eccentricity 5 and directrix {image} . {image}
Writing Equations of Conics
This presentation was written by Rebecca Hoffman
Review Circles: 1. Find the center and radius of the circle.
Today in Pre-Calculus Go over homework Chapter 8 – need a calculator
Parabolas Mystery Circles & Ellipses Hyperbolas What am I? $100 $100
7.6 Conics
Introduction to Conics: Parabolas
Warm-up Write the equation of an ellipse centered at (0,0) with major axis length of 10 and minor axis length Write equation of a hyperbola centered.
Section 11.6 – Conic Sections
Chapter 10 Algebra II Review JEOPARDY Jeopardy Review.
Polar Forms of Conic Sections
L10-2 Obj: Students will be able to find equations for parabolas
Presentation transcript:

11.8 Polar Equations of Conic Sections (skip 11.7)

We know from Chapter 10, x 2 + y 2 = 64 is an equation of a circle and can be written as r = 8 in polar form. We can write polar forms of equations for parabolas, ellipses, & hyperbolas (not circles) that have a focus at the pole and a directrix parallel or perpendicular to the polar axis. * d is directrix and e is eccentricity (we can derive equations using a general definition) * if e = 1  parabola, if e > 1  hyperbola, if 0 < e < 1  ellipse Often useful to use a vertex for the point

Polar Equation Directrix (d > 0 always) Axis To determine vertices, let: x = – dHorizontalθ = 0 and π x = dHorizontalθ = 0 and π y = – dVertical y = dVertical opp of directrix values that give trig function = 1

Ex 1) Identify the conic with equation. Find vertices & graph. let θ = 0: e = 2 ed = 6 2d = 6 d = 3 directrix: x = –3 (–6, 0) (2, π) let θ = π: 1 focus ALWAYS at pole! Note: directrix not necessarily in middle hyperbola

let θ = : e = 1 ed = ½ 1·d = ½ d = ½ directrix: y = ½ let θ = : 1 focus ALWAYS at pole! parabola 1 –1 Try on your own: Ex 2) Identify the conic with equation. Find vertices & graph.

0 *We can also work backwards to find an equation. Ex 3) Find a polar equation for the conic with the given characteristic. a) Focus at the pole; directrix: y = –3; eccentricity: form: b) The vertices are (2, 0) and (8, π). Find eccentricity & identify the conic. draw a sketch! V V C F 1 focus ALWAYS at pole!  ellipse to find d: center halfway between vertices

Homework #1109 Pg 586 #1, 5, 9, 13, 15, 17, 23, 25, 27, 29