Tony WeidbergNuclear Physics Lectures1 Today’s Menu Why study nuclear physics Why nuclear physics is difficult Course synopsis and textbooks Notation &

Slides:



Advertisements
Similar presentations
Energy Consumption Fossil Fuel Contribution to Global Energy Demand Year.
Advertisements

20th Century Discoveries
Physics of Fusion Lecture 1: The basics Lecturer: A.G. Peeters.
P461 - Nuclei I1 Properties of Nuclei Z protons and N neutrons held together with a short-ranged force  gives binding energy P and n made from quarks.
Chapter 29 Nuclear Physics.
Physics is fun!.
Nov 2006, Lecture 2 Nuclear Physics Lectures, Dr. Armin Reichold 1 Lecture 2 The Semi Empirical Mass Formula SEMF.
My Chapter 29 Lecture.
Nuclear Binding, Radioactivity Sections 32-1 – 32-9 Physics 1161: Lecture 33.
Chapter 30 Nuclear Physics
Nuclear Physics Nucleus: –nucleons (neutrons and protons) bound together. –Strong Force binds nucleons together over short range (~ m) –Nuclide:
PA 1140 Waves and Quanta Unit 4: Atoms and Nuclei l Lecture course slides can be seen at:
Course Name: Introduction to Nuclear Physics ( I ) 原子核物理導論(一) Course code : 3297 Instructor: 李秉政老師 “ 1 In the beginning God created the heavens and the.
Tony WeidbergNuclear Physics Lectures1 Today’s Menu Why study nuclear physics Why nuclear physics is difficult Course synopsis. Notation & Units.
P461 - Nuclei II1 Nuclear Shell Model Potential between nucleons can be studied by studying bound states (pn, ppn, pnn, ppnn) or by scattering cross sections:
Neutral Particles. Neutrons Neutrons are like neutral protons. –Mass is 1% larger –Interacts strongly Neutral charge complicates detection Neutron lifetime.
X-rays Section 31-7 Physics 1161: Pre-Lecture 32.
Feedback from last 2 lectures
P461 - Nuclei I1 Properties of Nuclei Z protons and N neutrons held together with a short-ranged force  gives binding energy P and n made from quarks.
Outline:4/13/07 Today: Start Chapter 22 Nuclear Chemistry - Definitions - Nuclear Stability - Modes of decay è CAPA 19 due tonight… è Special seminar Friday.
Tony WeidbergNuclear Physics Lectures1 Applications of Nuclear Physics Fusion –(How the sun works covered in Astro lectures) –Fusion reactor Radioactive.
NUCLEAR STRUCTURE PHENOMENOLOGICAL MODELS
Quantum Physics and Nuclear Physics
Radiology is concerned with the application of radiation to the human body for diagnostically and therapeutically purposes. This requires an understanding.
Advanced nuclear physics (APHY 376)
1 Chapter 31 Nuclear Physics and Radioactivity Nuclear Structure a)Proton - positive charge - mass x kg ≈ 1 u b) Neutron - discovered.
Isotopes Mass Defect E = mc2
Nuclear Systematics and Rutherford scattering. Terminology Atomic number (Z) is the number of protons in the nucleus of an atom, and also the number of.
Matching the Content to Your Class (I was told there would be no math)
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh). 1 Nuclear Binding Energy B tot (A,Z) = [ Zm H + Nm n - m(A,Z) ] c 2 B  m.
Atomic Structure Chapter 4
Why do some isotopes decay and others don’t? Generally, the less energy a nucleus has, the less likely it is to decay Nuclei move in the direction of lower.
Announcements Four circuits have the form shown in the diagram. The capacitor is initially uncharged and the switch S is open. The values of the emf,
Nuclear Physics Nucleus: –nucleons (neutrons and protons) bound together. –Strong Force binds nucleons together over short range (~ m) –Nuclide:
Q test remains programmed for this Friday –All problems that have been handed in are graded and are in your folder. –The Q practice test is on the front.
The atom and its nucleus By the end of this chapter you should be able to: appreciate that atomic spectra provide evidence for an atom that can only take.
Nucleon: T = ½, m t =  ½. For a nucleus, by extension: m t = ½ (Z - N). If neutrons and protons are really “identical” as far as the strong interaction.
Nuclear Physics PHY Outline  history  structure of the nucleus nuclear binding force liquid drop model shell model – magic numbers 
Lecture 1 & 2 © 2015 Calculate the mass defect and the binding energy per nucleon for a particular isotope.Calculate the mass defect and the binding.
Semi-Empirical Mass Formula Applications - I
Nuclear Physics. The famous Geiger-Marsden Alpha scattering experiment (under Rutherford’s guidance) In 1909, Geiger and Marsden were studying how alpha.
Radiochemistry Dr Nick Evans
Ch. 25 Nuclear Changes Begins on p. 35 of your PACKET.
Atomic and Nuclear Physics Goals: quanta-photons-matter waves, Isotopes, Binding Energy, Nuclear Decay and Nuclear Reactions.
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh) Nuclear and Radiation Physics Why nuclear physics? Why radiation.
Chapter 29:Nuclear Physics
Lecture 23: Applications of the Shell Model 27/11/ Generic pattern of single particle states solved in a Woods-Saxon (rounded square well)
Nov 2006, Lecture 1 Nuclear Physics Lectures, Dr. Armin Reichold 1 Lectures 1 Introduction and Overview Nuclear sizes and isotope shifts.
Phys 102 – Lecture 27 The strong & weak nuclear forces.
Lecture 21: On to Finite Nuclei! 20/11/2003 Review: 1. Nuclear isotope chart: (lecture 1) 304 isotopes with t ½ > 10 9 yrs (age of the earth) 177.
Thurs. Dec 10, 2009Phy208 Lecture 28 1 Course evaluations today Please fill out course evaluation. Start lecture ~ 12:15 pm Final Exam is Mon Dec 21, 5:05.
Applications of Nuclear Physics
Physics 12 Mr. Jean January 13th, 2012.
Monday, Sept. 18, 2006PHYS 3446, Fall 2006 Jae Yu 1 PHYS 3446 – Lecture #5 Monday, Sept. 18, 2006 Dr. Jae Yu 1.Nuclear Phenomenology 2.Properties of Nuclei.
Nuclear and Radiation Physics, BAU, First Semester, (Saed Dababneh) Nuclear and Radiation Physics Before we start, let us tackle.
Nuclear, i.e. pertaining to the nucleus. Nucleus Most nuclei contain p + and n 0 When packed closely together, there are strong attractive forces (nuclear.
Honors Physics Chapter 25: Subatomic Physics.  Nucleons  Protons and Neutrons that Make Up the Nucleus  Atomic Number (Z)  # of Protons  Atomic Mass.
PHYS219 Fall semester 2014 Lecture 27: Nuclear Structure Dimitrios Giannios Purdue University PHYS 219 Final Exam Thursday; December 18, PM-3 PM.
Nuclear Phenomenology 3C24 Nuclear and Particle Physics Tricia Vahle & Simon Dean (based on Lecture Notes from Ruben Saakyan) UCL.
Semi-Empirical Mass Formula part II Quantum Terms
X-rays Physics 102: Lecture 26 Make sure your grade book entries are correct.
Pairing Evidence for pairing, what is pairing, why pairing exists, consequences of pairing – pairing gap, quasi-particles, etc. For now, until we see what.
Physics 102: Lecture 26, Slide 1 X-rays Today’s Lecture will cover Section 27.4 Physics 102: Lecture 26 Make sure your grade book entries are correct.
Nuclear Physics Lecture 1& 2 © 2015, 2016.
CHAPTER 12 The Atomic Nucleus
Nucleons and the nucleus
Nuclear Physics, JU, Second Semester,
Units in Nuclear Physics
Nuclear Physics PHY
Presentation transcript:

Tony WeidbergNuclear Physics Lectures1 Today’s Menu Why study nuclear physics Why nuclear physics is difficult Course synopsis and textbooks Notation & Units

Tony WeidbergNuclear Physics Lectures2 What is the use of lectures Definition of a lecture: a process whereby notes are transferred from the pages of a lecturer to the pages of the student without passing through the head of either.

Tony WeidbergNuclear Physics Lectures3 The use of lectures Lectures provide: –best introduction to the subject. –guide to the main concepts, derivations and applications. –Enough material to start to tackle problems. During a lecture you need to: –Add your comments to the notes (the notes are very terse and are only useful if you do this). –Ask questions if you do not understand something ( if you don’t understand something, chances are that >50% of the audience also doesn’t understand). After a lecture you need to: –go over the notes, make sure you understand them and make your own notes. –Read material from textbook(s). –Do the problem sets.

Tony WeidbergNuclear Physics Lectures4 Why Study Nuclear Physics? Understand origin of different nuclei –Big bang: H, He and Li –Stars: elements up to Fe –Supernova: heavy elements We are all made of stardust Need to know nuclear cross sections  experimental nuclear astrophysics is a hot topic.

Tony WeidbergNuclear Physics Lectures5 Practical Applications Nuclear fission for energy generation. –No greenhouse gasses –Safety and storage of radioactive material. Nuclear fusion –No safety issue (not a bomb) –Less radioactive material but still some. Nuclear transmutation of radioactive waste with neutrons. –Turn long lived isotopes  stable or short lived. Every physicist should have an informed opinion on these important issues!

Tony WeidbergNuclear Physics Lectures6 Medical Applications Radiotherapy for cancer –Kill cancer cells. –Used for 100 years but can be improved by better delivery and dosimetery –Heavy ion beams can give more localised energy deposition. Medical Imaging –MRI (Nuclear magnetic resonance) –X-rays (better detectors  lower doses) –PET –Many others…see Medical & Environmental short option.

Tony WeidbergNuclear Physics Lectures7 Other Applications Radioactive Dating –C 14 /C 12 gives ages for dead plants/animals/people. – Rb/Sr gives age of earth as 4.5 Gyr. Element analysis –Forenesic (eg date As in hair). –Biology (eg elements in blood cells) –Archaeology (eg provenance via isotope ratios).

Tony WeidbergNuclear Physics Lectures8

Tony WeidbergNuclear Physics Lectures9 Why is Nuclear Physics Hard? QCD theory of strong interactions  just solve the equations … At short distance/large Q coupling constant small  perturbation theory ok but long distance/small Q, q  large Not on syllabus !

Tony WeidbergNuclear Physics Lectures10 Nuclear Physics Models Progress with understanding nuclear physics from QCD=0  use simple, approximate, phenomenological models. Liquid Drop Model: phenomenology + QM + EM. Shell Model: look at quantum states of individual nucleons  understand spin/parity magnetic moments and deviations from SEMF for binding energy.

Tony WeidbergNuclear Physics Lectures11 Corrections To err is human … and this is a new course  lots of mistakes. Please tell me about any mistakes you find in the notes (I will donate a bottle of wine to the person who finds the most mistakes!).

Tony WeidbergNuclear Physics Lectures12 The Minister of Science This is a true story honest. Once upon a time the government science minister visited the Rutherford Lab (UK national lab) and after a days visit of the lab was discussing his visit with the lab director and he said … I hope that you all have a slightly better grasp of the subject by the end!

Tony WeidbergNuclear Physics Lectures13 Course Synopsis - 1 Nuclear sizes and liquid drop model, S.E.M.F. Applications of S.E.M.F. –Williams, Nuclear & Particle Physics, OUP, chapters 4 & 5. –Krane, Introductory Nuclear Physics, Wiley, chapters 3, 8 & 9. Cross sections and Breit Wigner Resonances –Cottingham & Greenwood, An Introduction to Nuclear Physics, CUP, chapter 8 and appendices A & D. Radioactive decays –Alpha decay, Williams, chapter 6, Krane, chapter 8 –Beta decay, Williams, chapter 12, Krane chapter 9

Tony WeidbergNuclear Physics Lectures14 Course Synopsis - 2 Interactions of particles with matter –Textbook ??? Applications of Nuclear Physics –Particle detectors, textbook ? –Fission reactors and bombs, Krane chapter 13 –Fusion reactors, Krane, chapter 14. –Radioactive dating, Krane, chapter 6.

Tony WeidbergNuclear Physics Lectures15 Notation Nuclei are labelled where El is the chemical symbol of the element, mass number A = number of neutrons N + number of protons Z. eg Excited states labelled by * or m if they are metastable (long lived).

Tony WeidbergNuclear Physics Lectures16 Units SI units are fine for macroscopic objects like footballs but are very inconvenient for nuclei and particles  use natural units. Energy: 1 eV = energy gained by electron in being accelerated by 1V. –1 eV= e J. Mass: MeV/c 2 (or GeV/c 2 ) –1 eV/c 2 = e/c 2 kg. –Or use AMU defined by mass of 12 C= 12 u Momentum: MeV/c (or GeV/c) –1 eV/c = e/c kg m s -1 Cross sections: (as big as a barn door) –1 barn = m 2 Length: fermi 1 fm = m.

Tony WeidbergNuclear Physics Lectures17 Nuclear Masses and Sizes Masses and binding energies –Absolute values measured with mass spectrometers. –Relative values from reactions and decays. Nuclear Sizes –Measured with scattering experiments (leave discussion until after we have looked at Rutherford scattering). –Isotope shifts

Tony WeidbergNuclear Physics Lectures18 Nuclear Mass Measurements Measure relative masses by energy released in decays or reactions. –X  Y +Z +  E –Mass difference between X and Y+Z is  E/c 2. Absolute mass by mass spectrometers (next transparency). Mass and Binding energy: B = [Z M H + N M n – M(A,Z)]/c 2

Tony WeidbergNuclear Physics Lectures19 Mass Spectrometer Ion Source Velocity selector  electric and magnetic forces equal and opposite –qE=qvB  v=E/B Momentum selector, circular orbit satisfies: –Mv=qBr –Measurement r gives M. Ion Source Velocity selector Detector

Tony WeidbergNuclear Physics Lectures20 Binding Energy vs A B increases with A up to 56 Fe and then slowly decreases. Why? Lower values and not smooth at small A.

Tony WeidbergNuclear Physics Lectures21 Nuclear Sizes & Isotope Shift Coulomb field modified by finite size of nucleus. Assume a uniform charge distribution in the nucleus. Gauss’s law  integrate and apply boundary conditions Difference between actual potential and Coulomb Use 1 st order perturbation theory

Tony WeidbergNuclear Physics Lectures22 Isotope Shifts

Tony WeidbergNuclear Physics Lectures23 Isotope Shifts Isotope shift for optical spectra Isotope shift for X-ray spectra (bigger effect because electrons closer to nucleus) Isotope shift for X-ray spectra for muonic atoms. Effect greatly enhanced because m  ~ 207 m e and a 0 ~1/m. All data consistent with R=R 0 A 1/3 with R 0 =1.25fm.

Tony WeidbergNuclear Physics Lectures24 Frequency shift of an optical transition in Hg at =253.7nm for different A relative to A=198. Data obtained by laser spectroscopy. The effect is about 1 in (Note the even/odd structure.) Bonn et al Z Phys A 276, 203 (1976) A 2/3 Isotope Shift in Optical Spectra  E/h (GHz)

Tony WeidbergNuclear Physics Lectures25 Data on the isotope shift of K X ray lines in Hg. The effect is about 1 in Again the data show the R 2 = A 2/3 dependence and the even/odd effect. Lee et al, Phys Rev C 17, 1859 (1978)

Tony WeidbergNuclear Physics Lectures26 Data on Isotope Shift of K Xrays from muonic atoms [in which a muon with m=207m e takes the place of the atomic electron]. Because a 0 ~ 1/m the effect is ~0.4%, much larger than for an electron. The large peak is 2p 3/2 to 1s 1/2. The small peak is 2p 1/2 to 1s 1/2. The size comes from the 2j+1 statistical weight. Shera et al Phys Rev C 14, 731 (1976) 58 Fe 56 Fe 54 Fe Energy (keV)

Tony WeidbergNuclear Physics Lectures27 SEMF Aim: phenomenological understanding of nuclear binding energies as function of A & Z. Nuclear density constant (see lecture 1). Model effect of short range attraction due to strong interaction by liquid drop model. Coulomb corrections. Fermi gas model  asymmetry term. QM  pairing term. Compare with experiment: success & failure!

Tony WeidbergNuclear Physics Lectures28 Liquid Drop Model Nucleus Phenomenological model to understand binding energies. Consider a liquid drop –Ignore gravity and assume no rotation –Intermolecular force repulsive at short distances, attractive at intermediate distances and negligible at large distances  constant density. E=-  n + 4  R 2 T  B=  n-  n 2/3 Analogy with nucleus –Nucleus has constant density –From nucleon nucleon scattering experiments: Nuclear force has short range repulsion and attractive at intermediate distances. –Assume charge independence of nuclear force, neutrons and protons have same strong interactions  check with experiment!

Tony WeidbergNuclear Physics Lectures29 Mirror Nuclei Compare binding energies of mirror nuclei (nuclei n  p). Eg 7 3 Li and 7 4 Be. Mass difference due to n/p mass and Coulomb energy.

Tony WeidbergNuclear Physics Lectures30 nn and pp interaction same (apart from Coulomb) “Charge symmetry”

Tony WeidbergNuclear Physics Lectures31 Charge Symmetry and Charge Independence Mirror nuclei showed that strong interaction is the same for nn and pp. What about np ? Compare energy levels in “triplets” with same A, different number of n and p. e.g. Same energy levels for the same spin states  SI same for np as nn and pp.

Tony WeidbergNuclear Physics Lectures32 Charge Independence Is np force is same as nn and pp? Compare energy levels in nuclei with same A. Same spin/parity states have same energy. np=nn=pp Na Mg Mg Na Ne

Tony WeidbergNuclear Physics Lectures33 Charge Independence of Strong Interaction If we correct for n/p mass difference and Coulomb interaction, then energy levels same under n  p. Conclusion: strong interaction same for pp, pn and nn if nucleons are in the same quantum state. Beware of Pauli exclusion principle! eg why do we have bound state of pn but not pp or nn?

Tony WeidbergNuclear Physics Lectures34 Asymmetry Term Neutrons and protons are spin ½ fermions  obey Pauli exclusion principle. If other factors were equal  ground state would have equal numbers of n & p. Illustration Neutron and proton states with same spacing . Crosses represent initially occupied states in ground state. If three protons were turned into neutrons the extra energy required would be 3×3 . In general if there are Z-N excess protons over neutrons the extra energy is ((Z-N)/2) 2 . relative to Z=N.

Tony WeidbergNuclear Physics Lectures35 Asymmetry Term From stat. mech. density of states in 6d phase space = 1/h 3 Integrate to get total number of protons Z, & Fermi Energy (all states filled up to this energy level). Change variables p  E

Tony WeidbergNuclear Physics Lectures36 Asymmetry Term Binomial expansion keep lowest term in y/A Correct functional form but too small by factor of 2. Why?

Tony WeidbergNuclear Physics Lectures37 Pairing Term Nuclei with even number of n or even number of p more tightly bound  fig. Only 4 stable o-o nuclei cf 153 e-e. p and n have different energy levels  small overlap of wave functions. Two p(n) in same level with opposite values of j z have AS spin state  sym spatial w.f.  maximum overlap  maximum binding energy because of short range attraction. Neutron number Neutron separation energy in Ba

Tony WeidbergNuclear Physics Lectures38 Pairing Term Phenomenological fit to A dependence Effect smaller for larger A  e-e+ive e-o0 o-o-ive

Tony WeidbergNuclear Physics Lectures39 Semi Empirical Mass Formula Put everything together: Fit to measured binding energy. –Fit not too bad (good to <1%). –Deviations are interesting  shell effects. –Coulomb term agrees with calculation. –Asymmetry term larger ? –Explain valley of stability. –Explains energetics of radioactive decays, fission and fusion.

Tony WeidbergNuclear Physics Lectures40 The Binding Energy per nucleon of beta-stable (odd A) nuclei. Fit values in MeV a15.56 b17.23 c d0.697  +12 (o-o)  0 (o-e)  -12 (e-e) A B/A (MeV)

Tony WeidbergNuclear Physics Lectures41 Valley of Stability SEMF allows us to understand valley of stability. Low Z, asymmetry term  Z=N Higher Z, Coulomb term  N>Z.