Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.

Slides:



Advertisements
Similar presentations
DNS: Domain Name System CMPSCI 491G: Computer Networking Lab V. Arun Slides adapted from Liebeherr & Zarki, Kurose & Ross, Kermani.
Advertisements

DNS – Domain Name system Converting domain names to IP addresses since 1983.
 This Class  Chapter 9  Next Class  Wrap up this semester  Demo/discuss programming assignments  Review what we have learned  Questionnaire/Feedback.
Domain Name System (or Service) (DNS) Computer Networks Computer Networks Term B10.
1 EEC-484/584 Computer Networks Lecture 5 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
1 Outline r Principles of network applications m App architectures m App requirements r Web and HTTP m Objects vs. root files m Persistent, pipelining,
Domain Name System (or Service) (DNS) Computer Networks Computer Networks Spring 2012 Spring 2012.
EEC-484/584 Computer Networks Lecture 5 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
2: Application Layer1 FTP, SMTP and DNS. 2: Application Layer2 FTP: separate control, data connections r FTP client contacts FTP server at port 21, specifying.
1 Domain Name System (DNS). 2 DNS: Domain Name System Internet hosts, routers: –IP address (32 bit) - used for addressing datagrams –“name”, e.g., gaia.cs.umass.edu.
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach, 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007.
Application Layer session 1 TELE3118: Network Technologies Week 12: DNS Some slides have been taken from: r Computer Networking: A Top Down Approach.
CPSC 441: DNS1 Instructor: Anirban Mahanti Office: ICT Class Location: ICT 121 Lectures: MWF 12:00 – 12:50 Notes derived.
Name Resolution and DNS. Domain names and IP addresses r People prefer to use easy-to-remember names instead of IP addresses r Domain names are alphanumeric.
Chapter 2 Application Layer
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Introduction 1 Lecture 8 Application Layer (DNS, p2p) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science & Engineering.
NET0183 Networks and Communications Lecture 25 DNS Domain Name System 8/25/20091 NET0183 Networks and Communications by Dr Andy Brooks.
Cours du 22 novembre. Application Layer 2-2 Couche application DNS.
CS 4396 Computer Networks Lab
1 Domain Name System (DNS). 2 DNS: Domain Name System Internet hosts: – IP address (32 bit) - used for addressing datagrams – “name”, e.g.,
DNS & P2P A PPLICATIONS د. عـــادل يوسف أبو القاسم.
Domain Name System (DNS)
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Data Communications and Computer Networks Chapter 2 CS 3830 Lecture 10 Omar Meqdadi Department of Computer Science and Software Engineering University.
2: Application Layer 1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
2: Application Layer1 Some network apps r r Web r Instant messaging r Remote login r P2P file sharing r Multi-user network games r Streaming stored.
21-1 Last time □ Finish HTTP □ FTP This time □ SMTP ( ) □ DNS.
CS 471/571 Domain Name Server Slides from Kurose and Ross.
IT 424 Networks2 IT 424 Networks2 Ack.: Slides are adapted from the slides of the book: “Computer Networking” – J. Kurose, K. Ross Chapter 2: Application.
DNS: Domain Name System
Review: –Which protocol is used to move messages around in the Internet? –Describe how a message is moved from the sender’s UA to the receiver’s.
1 DNS: Domain Name System People: many identifiers: m SSN, name, Passport # Internet hosts, routers: m IP address (32 bit) - used for addressing datagrams.
Chapter 2 Application Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April A note on the use.
1 Application Layer Lecture 6 Imran Ahmed University of Management & Technology.
DNS: Domain Name System People: many identifiers: – SSN, name, Passport # Internet hosts, routers: – IP address (32 bit) - used for addressing datagrams.
Lecture 6: Video Streaming 2-1. Outline  Network basics:  HTTP protocols  Studies on HTTP performance from different views:  Browser types [NSDI 2014]
25.1 Chapter 25 Domain Name System Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
CSE 592 INTERNET CENSORSHIP (FALL 2015) LECTURE 04 PHILLIPA GILL, STONY BROOK UNIVERSITY ACKS: SLIDES BASED ON MATERIAL FROM NICK WEAVER’S PRESENTATION.
2: Application Layer1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
Application Layer 2-1 Chapter 2: outline 2.1 principles of network applications  app architectures  app requirements 2.2 Web and HTTP 2.3 FTP 2.4 electronic.
2: Application Layer1 DNS: Domain Name System People have many identifiers: SSN, name, passport number Internet hosts, routers have identifiers, too: IP.
CPSC 441: DNS 1. DNS: Domain Name System Internet hosts: m IP address (32 bit) - used for addressing datagrams m “name”, e.g., - used by.
CS 3830 Day 10 Introduction 1-1. Announcements r Quiz #2 this Friday r Program 2 posted yesterday 2: Application Layer 2.
Lecture 5: Web Continued 2-1. Outline  Network basics:  HTTP protocols  Studies on HTTP performance from different views:  Browser types [NSDI 2014]
FTP, Mail and DNS protocols
Chapter 2 Application Layer Computer Networking: A Top Down Approach, 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007.
2: Application Layer 1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Lecture 3: Web Continued Application Layer 2-1. Outline  Network basics:  HTTP protocols  Studies on HTTP performance from different views:  Browser.
COMP 431 Internet Services & Protocols
Application Layer, 2.5 DNS 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley.
Important r On Friday, could you ask students to please me their groups (one per group) for Project 2 so we can assign IP addresses. I’ll send.
CSEN 404 Application Layer II Amr El Mougy Lamia Al Badrawy.
Spring 2006 CPE : Application Layer_DNS 1 Special Topics in Computer Engineering Application layer: Domain Name System Some of these Slides are.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
2: Application Layer 1 Some network apps r r Web r Instant messaging r Remote login r P2P file sharing r Multi-user network games r Streaming stored.
Introduction to Networks
Session 6 INST 346 Technologies, Infrastructure and Architecture
Chapter 9: Domain Name Servers
Introduction to Communication Networks
Chapter 2 Application Layer
Chapter 7: Application layer
Cookies, Web Cache & DNS Dr. Adil Yousif.
DNS: Domain Name System
FTP, SMTP and DNS 2: Application Layer.
Chapter 2 Application Layer
Lecture 3 – Chapter 2 CIS 5617, Fall 2019 Anduo Wang
Presentation transcript:

Application Layer 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these ppt slides: We’re making these slides freely available to all (faculty, students, readers). They’re in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following:  If you use these slides (e.g., in a class) that you mention their source (after all, we’d like people to use our book!)  If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material. Thanks and enjoy! JFK/KWR All material copyright J.F Kurose and K.W. Ross, All Rights Reserved

Application Layer 2-2 Chapter 2: outline 2.1 principles of network applications  app architectures  app requirements 2.2 Web and HTTP 2.3 FTP 2.4 electronic mail  SMTP, POP3, IMAP 2.5 DNS 2.6 P2P applications 2.7 socket programming with UDP and TCP

Application Layer 2-3 DNS: domain name system people: many identifiers:  SSN, name, passport # Internet hosts, routers:  IP address (32 bit) - used for addressing datagrams  “name”, e.g., - used by humans Q: how to map between IP address and name, and vice versa ? Domain Name System:  distributed database implemented in hierarchy of many name servers  application-layer protocol: hosts, name servers communicate to resolve names (address/name translation)  note: core Internet function, implemented as application- layer protocol  complexity at network’s “edge”

Application Layer 2-4 DNS: services, structure why not centralize DNS?  single point of failure  traffic volume  distant centralized database  maintenance DNS services  hostname to IP address translation  host aliasing  canonical, alias names  mail server aliasing  load distribution  replicated Web servers: many IP addresses correspond to one name A: doesn’t scale!

Application Layer 2-5 Root DNS Servers com DNS servers org DNS serversedu DNS servers poly.edu DNS servers umass.edu DNS servers yahoo.com DNS servers amazon.com DNS servers pbs.org DNS servers DNS: a distributed, hierarchical database client wants IP for 1 st approx:  client queries root server to find com DNS server  client queries.com DNS server to get amazon.com DNS server  client queries amazon.com DNS server to get IP address for … …

Application Layer 2-6 DNS: root name servers  contacted by local name server that can not resolve name  root name server:  contacts authoritative name server if name mapping not known  gets mapping  returns mapping to local name server 13 root name “servers” worldwide a. Verisign, Los Angeles CA (5 other sites) b. USC-ISI Marina del Rey, CA l. ICANN Los Angeles, CA (41 other sites) e. NASA Mt View, CA f. Internet Software C. Palo Alto, CA (and 48 other sites) i. Netnod, Stockholm (37 other sites) k. RIPE London (17 other sites) m. WIDE Tokyo (5 other sites) c. Cogent, Herndon, VA (5 other sites) d. U Maryland College Park, MD h. ARL Aberdeen, MD j. Verisign, Dulles VA (69 other sites ) g. US DoD Columbus, OH (5 other sites)

Application Layer 2-7 TLD, authoritative servers top-level domain (TLD) servers:  responsible for com, org, net, edu, aero, jobs, museums, and all top-level country domains, e.g.: uk, fr, ca, jp  Network Solutions maintains servers for.com TLD  Educause for.edu TLD authoritative DNS servers:  organization’s own DNS server(s), providing authoritative hostname to IP mappings for organization’s named hosts  can be maintained by organization or service provider

Application Layer 2-8 Local DNS name server  does not strictly belong to hierarchy  each ISP (residential ISP, company, university) has one  also called “default name server”  when host makes DNS query, query is sent to its local DNS server  has local cache of recent name-to-address translation pairs (but may be out of date!)  acts as proxy, forwards query into hierarchy

Application Layer 2-9 requesting host cis.poly.edu gaia.cs.umass.edu root DNS server local DNS server dns.poly.edu authoritative DNS server dns.cs.umass.edu 7 8 TLD DNS server DNS name resolution example  host at cis.poly.edu wants IP address for gaia.cs.umass.edu iterated query:  contacted server replies with name of server to contact  “I don’t know this name, but ask this server”

Application Layer recursive query:  puts burden of name resolution on contacted name server  heavy load at upper levels of hierarchy? requesting host cis.poly.edu gaia.cs.umass.edu root DNS server local DNS server dns.poly.edu authoritative DNS server dns.cs.umass.edu 8 DNS name resolution example TLD DNS server

Application Layer 2-11 DNS: caching, updating records  once (any) name server learns mapping, it caches mapping  cache entries timeout (disappear) after some time (TTL)  TLD servers typically cached in local name servers thus root name servers not often visited  cached entries may be out-of-date (best effort name-to-address translation!)  if name host changes IP address, may not be known Internet-wide until all TTLs expire  update/notify mechanisms proposed IETF standard  RFC 2136

Application Layer 2-12 DNS records DNS: distributed db storing resource records (RR) type=NS  name is domain (e.g., foo.com)  value is hostname of authoritative name server for this domain RR format: (name, value, type, ttl) type=A  name is hostname  value is IP address type=CNAME  name is alias name for some “canonical” (the real) name  is really servereast.backup2.ibm.com  value is canonical name type=MX  value is name of mailserver associated with name

Application Layer 2-13 DNS protocol, messages  query and reply messages, both with same message format msg header  identification: 16 bit # for query, reply to query uses same #  flags:  query or reply  recursion desired  recursion available  reply is authoritative identificationflags # questions questions (variable # of questions) # additional RRs # authority RRs # answer RRs answers (variable # of RRs) authority (variable # of RRs) additional info (variable # of RRs) 2 bytes

Application Layer 2-14 name, type fields for a query RRs in response to query records for authoritative servers additional “helpful” info that may be used identificationflags # questions questions (variable # of questions) # additional RRs # authority RRs # answer RRs answers (variable # of RRs) authority (variable # of RRs) additional info (variable # of RRs) DNS protocol, messages 2 bytes

Application Layer 2-15 Inserting records into DNS  example: new startup “Network Utopia”  register name networkuptopia.com at DNS registrar (e.g., Network Solutions)  provide names, IP addresses of authoritative name server (primary and secondary)  registrar inserts two RRs into.com TLD server: (networkutopia.com, dns1.networkutopia.com, NS) (dns1.networkutopia.com, , A)  create authoritative server type A record for type MX record for networkutopia.com

Attacking DNS DDoS attacks  Bombard root servers with traffic  Not successful to date  Traffic Filtering  Local DNS servers cache IPs of TLD servers, allowing root server bypass  Bombard TLD servers  Potentially more dangerous Redirect attacks  Man-in-middle  Intercept queries  DNS poisoning  Send bogus relies to DNS server, which caches Exploit DNS for DDoS  Send queries with spoofed source address: target IP  Requires amplification Application Layer 2-16

Application Layer 2-17 Chapter 2: outline 2.1 principles of network applications  app architectures  app requirements 2.2 Web and HTTP 2.3 FTP 2.4 electronic mail  SMTP, POP3, IMAP 2.5 DNS 2.6 P2P applications 2.7 socket programming with UDP and TCP

Application Layer 2-18 Pure P2P architecture  no always-on server  arbitrary end systems directly communicate  peers are intermittently connected and change IP addresses examples:  file distribution (BitTorrent)  Streaming (KanKan)  VoIP (Skype)

Application Layer 2-19 Chapter 2: summary  application architectures  client-server  P2P  application service requirements:  reliability, bandwidth, delay  Internet transport service model  connection-oriented, reliable: TCP  unreliable, datagrams: UDP our study of network apps now complete!  specific protocols:  HTTP  FTP  SMTP, POP, IMAP  DNS  P2P: BitTorrent, DHT  socket programming: TCP, UDP sockets

Application Layer 2-20  typical request/reply message exchange:  client requests info or service  server responds with data, status code  message formats:  headers: fields giving info about data  data: info being communicated important themes:  control vs. data msgs  in-band, out-of-band  centralized vs. decentralized  stateless vs. stateful  reliable vs. unreliable msg transfer  “complexity at network edge” Chapter 2: summary most importantly: learned about protocols!