OMI Science Team Meeting 2008 Using A-Train synergy to determine the potential impact of volcanic degassing on climate S.A. Carn 1, J. Wang 2, N.A. Krotkov.

Slides:



Advertisements
Similar presentations
OMI Science Team Meeting 24 – 27 June 2008, FMI Iterative Retrieval of Large SO 2 from Volcanic Eruptions Kai Yang 1,3, Nikolay Krotkov 1,3, Arlin Krueger.
Advertisements

Interpreting MLS Observations of the Variabilities of Tropical Upper Tropospheric O 3 and CO Chenxia Cai, Qinbin Li, Nathaniel Livesey and Jonathan Jiang.
Second ICAP Workshop Aerosol Modeling using the GISS modelE Sophia Zhang, Dorothy Koch, Susanna Bauer, Reha Cakmur, Ron Miller, Jan Perlwitz Nadine Bell.
Air Quality-Climate Interactions Aijun Xiu Carolina Environmental Program.
THE ATMOSPHERE: OXIDIZING MEDIUM IN GLOBAL BIOGEOCHEMICAL CYCLES
Constraints on the Production of Nitric Oxide by Lightning as Inferred from Satellite Observations Randall Martin Dalhousie University With contributions.
Intercontinental Transport and Climatic Effects of Air Pollutants Intercontinental Transport and Climatic Effects of Air Pollutants Workshop USEPA/OAQPS.
MET 112 Global Climate Change - Lecture 6 Wildfire Impacts Dr. Craig Clements San Jose State University Outline  Wildfires  Aerosols.
Sensitivity of sulfate direct climate forcing to the hysteresis of particle phase transitions Jun Wang, Andrew Hoffman, Scot Martin, Daniel Jacob Present.
This Week—Tropospheric Chemistry READING: Chapter 11 of text Tropospheric Chemistry Data Set Analysis.
Aerosols and climate Rob Wood, Atmospheric Sciences.
MET 12 Global Climate Change – Lecture 8
The Role of Aerosols in Climate Change Eleanor J. Highwood Department of Meteorology, With thanks to all the IPCC scientists, Keith Shine (Reading) and.
ANTHROPOGENIC AND VOLCANIC CONTRIBUTIONS TO THE DECADAL VARIATIONS OF STRATOSPHERIC AEROSOL Mian Chin, NASA Goddard Space Flight Center Plus: Thomas Diehl,
ATMOSPHERIC CHEMISTRY: FROM AIR POLLUTION TO GLOBAL CHANGE AND BACK Daniel J. Jacob.
Volcanoes and the Atmosphere Rich Stolarski 22 June 2012 Pinatubo.
Frascati nov 2009 A.-C. Engvall, A. Stohl, N. I. Kristiansen, A. Fahre Vik, K. Tørseth, and others Norwegian Institue for Air Research NILU Dept.
1 Use of Satellites in AQ Analysis and Emissions Improvement.
Satellite Measurements of Volcanic SO 2 Emissions into the UTLS Simon A. Carn 1, Kai Yang 2,3, Nickolay A. Krotkov 3, and Fred J. Prata 4 1.Michigan Technological.
Konrad Cunningham, Joel Arberman, Nadine Bell, Susan Harder, Drew Schindell, Gavin Schmidt The Effects of Climate and Emission Changes on Surface Sulfate.
Penn State Colloquium 1/18/07 Atmospheric Physics at UMBC physics.umbc.edu Offering M.S. and Ph.D.
(Impacts are Felt on Scales from Local to Global) Aerosols Link Climate, Air Quality, and Health: Dirtier Air and a Dimmer Sun Emissions Impacts == 
FROM AIR POLLUTION TO GLOBAL CHANGE AND BACK: Towards an integrated international policy for air pollution and climate change Daniel J. Jacob Harvard University.
Insight from the A-Train into Global Air Quality Randall Martin, Dalhousie and Harvard-Smithsonian Aaron van Donkelaar, Lok Lamsal, Akhila Padmanabhan,
Mapping isoprene emissions from space Dylan Millet with
EOS CHEM. EOS CHEM Platform Orbit: Polar: 705 km, sun-synchronous, 98 o inclination, ascending 1:45 PM +/- 15 min. equator crossing time. Launch date.
EOS CHEM. EOS-CHEM Platform Orbit: Polar: 705 km, sun-synchronous, 98 o inclination, ascending 1:45 PM +/- 15 min. equator crossing time. Launch date.
Band Residual Difference algorithm for retrieval of SO 2 from the AURA OMI N. Krotkov 1, S. Carn 2, A. Krueger 2, P. K. Bhartia 3, K. Yang 3 1.Goddard.
1 Remote Sensing of Tropospheric Constituents by OMI on EOS Aura Satellite Pawan K Bhartia NASA Goddard Space Flight Center, Greenbelt, MD, USA Split Antarctic.
Using MODIS fire count data as an interim solution for estimating biomass burning emission of aerosols and trace gases Mian Chin, Tom Kucsera, Louis Giglio,
The A-Train: Exploiting the Electromagnetic Spectrum
TOP-DOWN CONSTRAINTS ON REGIONAL CARBON FLUXES USING CO 2 :CO CORRELATIONS FROM AIRCRAFT DATA P. Suntharalingam, D. J. Jacob, Q. Li, P. Palmer, J. A. Logan,
Improved representation of boreal fire emissions for the ICARTT period S. Turquety, D. J. Jacob, J. A. Logan, R. M. Yevich, R. C. Hudman, F. Y. Leung,
Randall Martin Space-based Constraints on Emission Inventories of Nitrogen Oxides Chris Sioris, Kelly Chance (Smithsonian Astrophysical Observatory) Lyatt.
Randall Martin Space-based Constraints on Emissions of Nitrogen Oxides With contributions from: Chris Sioris, Kelly Chance (Smithsonian Astrophysical Observatory)
Global Satellite Observations of Volcanic Plumes for Aviation Hazard Mitigation Kai Yang (GSFC/NASA and GEST/UMBC) Nick Krotkov (GSFC/NASA) Simon Carn.
A four year record of Aerosol Absorption measurements from OMI near UV observations Omar Torres Department of Atmospheric and Planetary Sciences Hampton.
OMI ST, June 26, 2008 Krueger, AJ, “Sighting of El Chichon Sulfur Dioxide Clouds with the Nimbus 7 Total Ozone Mapping Spectrometer”, Science, :
1 MET 112 Global Climate Change MET 112 Global Climate Change - Lecture 11 Radiative Forcing Eugene Cordero San Jose State University Outline  GHG/Aerosols.
Fanglin Yang Work Done at Climate Research Group
Human fingerprints on our changing climate Neil Leary Changing Planet Study Group June 28 – July 1, 2011 Cooling the Liberal Arts Curriculum A NASA-GCCE.
GLOBAL SULFUR BUDGET [Chin et al., 1996] (flux terms in Tg S yr -1 ) Phytoplankton (CH 3 ) 2 S SO 2  1.3d DMS  1.0d OHNO 3 Volcanoes Combustion.
The GEOS-CHEM Simulation of Trace Gases over China Li ZHANG and Hong LIAO Institute of Atmospheric Physics Chinese Academy of Sciences April 24, 2008.
Characterization of Aerosols using Airborne Lidar, MODIS, and GOCART Data during the TRACE-P (2001) Mission Rich Ferrare 1, Ed Browell 1, Syed Ismail 1,
OVERVIEW OF ATMOSPHERIC PROCESSES: Daniel J. Jacob Ozone and particulate matter (PM) with a global change perspective.
Space-based Constraints on Global SO 2 Emissions and Timely Updates for NO x Inventories Randall Martin, Dalhousie and Harvard-Smithsonian Chulkyu Lee,
AT737 Aerosols.
SATELLITE OBSERVATIONS OF ATMOSPHERIC CHEMISTRY Daniel J. Jacob.
Status of the Development of a Tropospheric Ozone Product from OMI Measurements Jack Fishman 1, Jerald R. Ziemke 2,3, Sushil Chandra 2,3, Amy E. Wozniak.
Aerosols and climate - a crash course Marianne T. Lund CICERO Nove Mesto 17/9-15.
Opening Remarks Joanna Joiner NASA. Aura senior review Every 2 years, NASA reviews all operating missions for extension Aura Project Science Office tasked.
1 Monitoring Tropospheric Ozone from Ozone Monitoring Instrument (OMI) Xiong Liu 1,2,3, Pawan K. Bhartia 3, Kelly Chance 2, Thomas P. Kurosu 2, Robert.
1 Examining Seasonal Variation of Space-based Tropospheric NO 2 Columns Lok Lamsal.
04/12/011 The contribution of Earth degassing to the atmospheric sulfur budget By Hans-F. Graf, Baerbel Langmann, Johann Feichter From Chemical Geology.
SO 2 data from the Ozone Monitoring Instrument (OMI) N. Krotkov 1, A. Krueger 2, K. Yang 1, S. Carn 2,P. K. Bhartia 3, P. F. Levelt 4 1. Goddard Earth.
Dust as a Tracer of Climate Change in Antarctica and as modulator of Phytoplankton Activity Ice core records show a correlation of dust deposition and.
Monitoring volcanic haze from space: the Bárðarbunga fissure eruption OMI Science Team Meeting 31 August – 2 September 2015, KNMI, de Bilt Image: VIIRS.
Earth Observing Satellites Update John Murray, NASA Langley Research Center NASA Aviation Weather Satellites Last Year NASA’s AURA satellite, the chemistry.
Jetstream 31 (J31) in INTEX-B/MILAGRO. Campaign Context: In March 2006, INTEX-B/MILAGRO studied pollution from Mexico City and regional biomass burning,
GEOS-CHEM Activities at NIA Hongyu Liu National Institute of Aerospace (NIA) at NASA LaRC June 2, 2003.
David Stevenson 1, Colin Johnson 2, Ellie Highwood 3, Bill Collins 2, & Dick Derwent 2 1 School of GeoSciences, University of Edinburgh 2 The Met Office.
FIVE CHALLENGES IN ATMOSPHERIC COMPOSITION RESEARCH 1.Exploit satellite and other “top-down” atmospheric composition data to quantify emissions and export.
OMI SO 2 Product Status and outlook N. Krotkov 1, A. Krueger 2, K. Yang 1, S. Carn 2,P. K. Bhartia 3, K. Evans 2 1. Goddard Earth Sciences and Technology.
Solène Turquety – AGU fall meeting, San Francisco, December 2006 High Temporal Resolution Inverse Modeling Analysis of CO Emissions from North American.
1 UWG Meeting, November 16, 2010 UWG Member: Nickolay Krotkov Affiliation: NASA Contact Information: NASA-NOAA-FMI-KNMI project.
Mayurakshi Dutta Department of Atmospheric Sciences March 20, 2003
Atmospheric modelling of the Laki eruption
During April 2008, as part of the International Polar Year (IPY), NOAA’s Climate Forcing and Air Quality Programs engaged in an airborne field measurement.
MEASUREMENT OF TROPOSPHERIC COMPOSITION FROM SPACE IS DIFFICULT!
CALIPSO Total Attenuated Backscatter 532 nm 7 June 2006 Volcanic plume
Presentation transcript:

OMI Science Team Meeting 2008 Using A-Train synergy to determine the potential impact of volcanic degassing on climate S.A. Carn 1, J. Wang 2, N.A. Krotkov 3, K. Yang 3, A.J. Krueger 1 1.Joint Center for Earth Systems Technology (JCET), UMBC, Baltimore, MD 2.Dept. of Geosciences, University of Nebraska – Lincoln, Lincoln, NE 3.Goddard Earth Science and Technology (GEST) Center, UMBC, Baltimore, MD

OMI Science Team Meeting 2008 OverviewOverview Aura mission foci – ozone, air quality and climate Volcanic eruptions – important natural climate forcing OMI and A-Train – unprecedented observations of volcanic SO 2 and aerosol Combined satellite data/modeling study – direct radiative forcing of volcanic sulfate aerosol

OMI Science Team Meeting 2008 Motivation for SO 2 measurements Climate impacts Volcanic and aviation hazards Air quality and environmental hazards Source: IPCC, 2001

Tropospheric aerosols (Lifetime  1-3 weeks) Passive SO 2  H 2 SO 4 Indirect Effects on Clouds Explosive NET COOLING Stratospheric aerosols (Lifetime  1-3 years) Ash Effects on cirrus clouds absorption (IR) IR Heating emission IR Cooling More Downward IR Flux Less Upward IR Flux forward scatter Enhanced Diffuse Flux Reduced Direct Flux Less Total Solar Flux Heterogeneous  Less O 3 depletion Solar Heating H 2 S SO 2 NET HEATING  H 2 SO 4 CO 2 H 2 O backscatter absorption (near IR) Solar Heating More Reflected Solar Flux Effects of volcanic emissions on the climate system Tropopause (8-17 km) TROPOSPHERE STRATOSPHERE

OMI Science Team Meeting 2008 Impacts of historic volcanic eruptions on climate Laki (Iceland), ; ~120 Tg SO 2 –‘Dry fogs’ across Europe –Severe winters across Asia and North America in Tambora (Indonesia), 1815; ~60 Tg SO 2 –Global average cooling of ºC for 3 years –‘Year without summer’ in 1816, summer frosts and snowfall in North America Krakatau (Indonesia), 1883; ~40 Tg SO 2 –Global average cooling of ºC for >1 year Pinatubo (Philippines), 1991; ~20 Tg SO 2 –Global average cooling of ~ ºC –7% reduction in total column Ozone

OMI Science Team Meeting 2008 TOMS Volcanic SO 2 Emissions Inventory Only Pinatubo (1991) and El Chichon (1982) linked to measurable climate impacts El Chichon Pinatubo OMI

OMI Science Team Meeting 2008 Global SO 2 burden from OMI: Sep Oct 2007 Sierra Negra Soufriere Hills Nyamulagira Rabaul P. Fournaise Manam Anatahan

Bottom-up inventory of global sulfur emissions Volcanic Marine and terrestrial DMS Biomass burning Fossil fuel use and industry Explosive (E) Passive (P) [Graf et al., 1997; Andres & Kasgnoc, 1998]

OMI Science Team Meeting 2008 Long-range transport of SO 2 clouds: Soufriere Hills, May 2006 HYSPLIT trajectory (13 days at 20 km) [Carn et al., ACPD, 2007] Soufriere Hills, Montserrat

OMI Science Team Meeting 2008 OMI average SO 2 for 2005: W. Pacific/S.E. Asia Anatahan (CNMI) Ambrym (Vanuatu) Manam (PNG) Bagana (PNG) China

OMI Science Team Meeting 2008 Comparing emission inventories with measurements Data for 1970s-1997 from GEIA database [Andres & Kasgnoc, 1998] OMI measurements improve on current SO 2 emission inventories GEIA OMI

OMI - SO 2, aerosols, BrO TES - SO 2, HCl MLS - strat. SO 2, HCl MODIS - SO 2, ash, sulfate AIRS - UTLS SO 2, aerosols, SO 2 profile? CALIPSO - cloud height, aerosol type Exploiting A-Train synergy for volcanic cloud studies

OMI Science Team Meeting 2008 Aura/OMI – Aura/MLS: Manam (PNG), Jan 2005 OMI SO 2 MLS SO 2 Manam MLS SO 2 profile MLS HCl profile Estimate stratospheric chlorine input

OMI Science Team Meeting 2008 AIRS 19:55 UT Aura/OMI - Aqua/AIRS: Sierra Negra (Galapagos) 2005 OMI 20:10 UT S. Negra Lower tropospheric SO 2 Sierra Negra (Galapagos) eruption, October 24, 2005 OMI-AIRS synergy indicates SO 2 concentrated in the lower troposphere F. Prata, NILU

OMI Science Team Meeting 2008 OMI - Aqua/AIRS - CALIPSO: Chaitén (Chile), May 2008 [Carn et al., EOS, in prep.] Chaitén AIRS SO 2 May 7, 0442 UT OMSO2 May 6, 1925 UT OMSO2 May 7, 1650 UT 16 km CALIPSO May 7, 0430 UT

OMI Science Team Meeting 2008 Proposed EOS data – modeling study A Combined EOS Data and GEOS-Chem Modeling Study of the Direct Radiative Forcing of Volcanic Sulfate Aerosols –NASA Modeling, Analysis and Prediction (MAP) program 2008 –PIs: J. Wang (UNL), S.A. Carn Rationale –Direct radiative forcing of volcanic sulfate aerosol poorly understood, particularly its spatiotemporal variability [IPCC, 2007] –Negative forcing of anthropogenic origin will decline –Large uncertainties on composition, phase and size of sulfate particles in mid- and upper troposphere [IPCC, 2007] –OMI and A-Train: unprecedented volcanic SO 2 observations –New iterative OMI SO 2 -O 3 algorithm for large eruptions –GEOS-Chem: 3D global atmospheric chemistry model –Updated sulfate aerosol module implemented in GEOS-Chem

OMI Science Team Meeting 2008 Sulfate aerosol phase transition and radiative forcing solid aqueous Phase transition Radiative forcing Sulfate radiative forcing dependent on composition, phase and RH Aircraft data indicate neutralization of sulfate by NH 3 above 5 km Sulfate phase transition module implemented in GEOS-Chem [Wang et al., 2008] – disregarded by most GCMs/CTMs Crystallization RH Deliquescence RH

OMI Science Team Meeting 2008 ApproachApproach Use OMI volcanic SO 2 data to drive GEOS-Chem CTM –New top-down volcanic SO 2 emission inventory for CTM community –Include SO 2 loading and altitude –Include TOMS SO 2 data for Supplement OMI SO 2 data with AIRS and MLS SO 2 data –Information on SO 2 vertical profile; nighttime eruptions Use GEOS-Chem to model sulfate aerosol distribution, phase, composition and optical properties –Calculate direct radiative forcing of volcanogenic sulfate aerosol Compare model results with aerosol data from OMI, MODIS, CALIPSO, MISR –Validate model using eruption case studies –Refine SO 2 emission inventory

OMI Science Team Meeting 2008 Aqua MODIS: Oct 7 Eruption example: Rabaul (PNG), Oct 7, 2006 Oct 7 Oct 8 Oct 9 Total SO 2 : ~0.3 Tg

OMI Science Team Meeting 2008 GEOS-Chem simulation: Rabaul (PNG), Oct 9, 2006 OMSO2: 9 Oct Eruption on Oct 7

OMI Science Team Meeting 2008 Aerosol data: Rabaul (PNG), Oct 2006 Aqua MODIS AOT: 8-9 Oct CALIPSO Backscatter: 14 Oct MISR AOT: 8-9 Oct OMAERO: 8 Oct OMSO2: 8 Oct

OMI Science Team Meeting 2008 SummarySummary Volcanic eruptions are a major cause of natural climate forcing –Major climate forcing eruptions occur ~1-2 times per century –Background of frequent smaller eruptions OMI and the A-Train are providing unprecedented measurements of volcanic SO 2 and aerosol –Near 100% detection rate during normal operations –A-Train synergy provides altitude information Sulfate particle phase transition incorporated in GEOS-Chem model –Accurate simulation of sulfate phase and optical properties Unique opportunity to study the direct radiative forcing of volcanic sulfate aerosol –New top-down SO 2 emission inventory will be developed for the CTM community

Bottom-up inventory of global sulphur emissions Volcanic Marine and terrestrial DMS Biomass burning Fossil fuel use and industry Explosive % Moderate Passive 5-10 % Low 18 % Low 2 % Low 66 % Moderate TOTAL: ~100 Tg/yr LOSU [Graf et al., 1997; Andres & Kasgnoc, 1998] Sulfate burden

OMI Science Team Meeting 2008 Detection of passive degassing with OMI: SW Pacific Mariana Is Papua New Guinea Solomon Is Vanuatu Volcanic SO 2 plumes in PBL

OMI Science Team Meeting 2008 Aura/OMI - CALIPSO lidar: Soufriere Hills, May 2006 May 20 eruption on Montserrat SO 2 tracked for 3 weeks Cloud altitude ~20 km Aerosol layer non-depolarizing Sulfate dominant, not ash [Credit: CALIPSO Team, NASA Langley] [Carn et al., ACPD, 2007] CALIPSO ‘first light’ - 7 June 2006 OMI SO June 2006