Selecting the Ventilator and the Mode

Slides:



Advertisements
Similar presentations
Neonatal Mechanical Ventilation
Advertisements

Initiation and weaning of mechanical ventilation by Ahmed Mohamed Hassan
Basics of Mechanical Ventilation
Patient – Ventilator Asynchrony
The Map Between Lung Mechanics and Tissue Oxygenation The Map Between Lung Mechanics and Tissue Oxygenation.
CPAP/PSV.
Improving Oxygenation
1 Pre-ICU Training CHEST Mechanical Ventilatory Support 2008/6/20.
Mechanical Ventilaton Ramon Garza III, M.D.. Indications Airway instability Most surgical patients or trauma Primary Respirator Failure Mostly medical.
Educational Resources
“… an opening must be attempted in the trunk of the trachea, into which a tube of reed or cane should be put; you will then blow into this, so that the.
Mechanical Ventilation in the Neonate RC 290 CPAP Indications: Refractory Hypoxemia –PaO2 –Many hospitals use 50% as the upper limit before changing.
Introduction to Mechanical Ventilation
Trigger/Limit/Cycle/Baseline
Troubleshooting and Problem Solving
Ventilator Graphics: Not Just Pretty Lines
Initiation of Mechanical Ventilation
Initial Ventilator Settings
D. Sara Salarian,. Nov 2006 Kishore P. Critical Care Conference  Improve oxygenation  Increase/maintain minute ventilation and help CO 2 clearance 
Mechanical Ventilation Tariq Alzahrani M.D Assistant Professor College of Medicine King Saud University.
Copyright © 2013, 2009, 2003, 1999, 1995, 1990, 1982, 1977, 1973, 1969 by Mosby, an imprint of Elsevier Inc. Chapter 42 Mechanical Ventilators.
Principles of Mechanical Ventilation
Ventilator.
CMV Mode Workshop.
MECHANICAL VENTILATORS By Dr. Ahmed Mostafa Assist. Prof. of anesthesia & I.C.U.
Review of modes of mechanical ventilation By Elizabeth Kelley Buzbee A.A.S., R.R.T.-N.P.S., R.C.P.
How a Breath is Delivered
Principles of Mechanical Ventilation
Building a Solid Understanding of Mechanical Ventilation
By: Susan P. Pilbeam, MS, RRT, FAARC John D. Hiser, MEd, RRT, FAARC
Mechanical Ventilation BY: Jonathan Phillips. Introduction Conventional mechanical ventilation refers to the delivery of full or partial ventilatory support.
1 Elsevier items and derived items © 2010 by Saunders, an imprint of Elsevier Inc. Chapter 19 Mechanical Ventilation of the Neonate and Pediatric Patient.
Dr Chaitanya Vemuri Int.Med M.D Trainee.  The choice of ventilator settings – guided by clearly defined therapeutic end points.  In most of cases :
Without reference, identify principles about volume/pressure and high frequency ventilators with at least 70 percent accuracy.
DR MUHAMMAD BILAL NON INVASIVE VENTILATION. DEFINITION : - DELIVERY OF MECHANICAL VENTILATION TO THE LUNGS THAT DON’T REQUIRE ET.T. OR TRACHEOSTOMY IRON.
Final Considerations in Ventilator Setup Chapter 8.
How To Ventilate ICU Patient Dr Mohammed Bahzad MBBS.FRCPC,FCCP,FCCM Head Of Critical Care Department Mubarak Alkbeer Hospital.
Non invasive Ventilation (NIV) MOHSIN ED,SRH. Non Invasive Ventilation(NIV) Delivery of ventilation to the lungs without an invasive airway (endotracheal.
Basics & principles of mechanical ventilation g.k.kumar.
Ventilator Graphics Chapter 10. Graphics Monitor the function of the ventilator Evaluate the patient’s response to the ventilator Help the clinician adjust.
Advanced Modes of CMV RC 270. Pressure Support = mode that supports spontaneous breathing A preset pressure is applied to the airway with each spontaneous.
Mechanical Ventilation EMS Professions Temple College.
Basic Concepts in Adult Mechanical Ventilation
 Understand the different breath types with SIMV  Know the Phase variables of the different breath types: trigger/limit/cycle  Know the breath sequence.
BASICS OF WAVEFORM INTERPRETATION Michael Haines, MPH, RRT-NPS, AE-C
Ventilator Graphics Emeritus Professor Georgia State University
Mechanical Ventilation 1
ESSENTIALS OF VENTILATOR GRAPHICS
Mechanical Ventilation 101
1 © 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license.
3 nd LECTURE VENTILATORS Part One. Ventilators One of the major life support systems. Ventilators take over the vital role of the respiratory muscles.
Abby Erickson, RRT Review of RT 110.  Performed by: Hand Machine  Available for: Short term Long term Acute care Extended home care.
Mechanical Ventilation Graphical Assessment
 Understand the dual control concept  Understand the pressure regulation mechanism in PRVC  Demonstration of PRVC  Settings and adjustment with Servo.
Ventilatory Modes. Volume Controlled Mandatory Breath Gas is delivered at a constant flow until the set tidal volume is reached. Pressure rises to a.
Ventilatory Modes Graphnet Ventilator.
PRESSURE CONTROL VENTILATION
Mechanical Ventilation
Basics of Mechanical Ventilation RET Advanced Mechanical Vent Lecture 1 Reorientation and Basic Operational Principles Dr. J. Elsberry Special.
Mechanical Ventilation
Mechanical Ventilation Basic Modes
Mechanical Ventilation - Introduction
Introduction to Basic Waveforms
Mechanical Ventilator 2
Mechanical Ventilation
Sue Pilbeam & Gopal Allada, M.D.
Advanced Modes of Mechanical Ventilation
Basic Concepts in Adult Mechanical Ventilation
FLIGHT MEDICAL B-Lev Mode Biphasic Ventilation Confidential.
Pumping up the Pressure
Presentation transcript:

Selecting the Ventilator and the Mode Chapter 6

Criteria for Ventilator Selection Why does the patient need ventilatory support? Does the ventilation problem require a special mode? What therapeutic goals can be achieved by using a ventilator? Does the patient need to be intubated or can a mask be used? Will therapeutic intervention take place in an ICU or the patient’s home? Will ventilatory support be provided for a brief period of time or will long-term assistance be required? How familiar is the staff with the ventilator under consideration?

Invasive VS Non-invasive Artificial airway Translaryngeal airways – oral or nasal endotracheal tubes Tracheostomy tube Mask

Noninvasive Ventilation NPV: negative pressure ventilators CPAP: continuous positive airway pressure Used to improve oxygenation Treat obstructive sleep apnea NPPV: noninvasive positive pressure ventilation Advantages of NPPV Avoids complications with artificial airways Provides flexibility in initiating and removing ventilation Reduces requirements for sedation Preserves airway defenses Reduces need for invasive monitoring Disadvantages of NPPV Can cause gastric distention Skin pressure lesions Dry membranes –oral nasal, eye irritations Claustrophobia Poor sleep

Invasive Positive Pressure Ventilation Full ventilatory support: the ventilator provides all the energy necessary to maintain effective alveolar ventilation Partial ventilatory support: any degree of mechanical ventilation in which the set rates are lower than 6 breaths/min and the patient participates in WOB to help maintain effective alveolar ventilation

Type of breath delivery Mandatory Ventilator controls the timing, tidal volume or both Spontaneous Patient controls the timing and the tidal volume Assisted Characteristics of both spontaneous and mandatory breaths All or part of the breath is generated by the ventilator The patient triggers and cycles the breath

Control Variables: the independent variable used to establish gas flow to the patient Volume Control Volume provided to the patient is constant and independent of what happens to pressure when the patient’s lung characteristics change or when the patient’s effort changes Use when consistent tidal volume delivery is important; goal is to maintain a certain level of PaCO2 Guarantees a specific volume delivery and Ve regardless of changes in lung compliance and resistance Disadvantages: Peak and alveolar pressures rise when lung conditions worsen = alveolar over distention; delivery of flow may be fixed and not match patient demand; inappropriate trigger settings Pressure Control Pressure remains constant whereas volume delivery changes as lung characteristic change Used when the limiting of pressure delivery is important Allows the clinician to set a maximum pressure, reducing the risk of lung over distention, uses a descending flow pattern; may be more comfortable for pts who can breathe spontaneously Disadvantages: volume delivery varies, tidal volume and minute ventilation decrease when lung characteristics deteriorate

Modes of Ventilation breath type and timing of breath delivery CMV: all breaths are mandatory and can be volume or pressure targeted; breaths can be patient or time triggered Time triggered breaths in CMV is called control mode A/C mode is time or patient triggered Sensitivity settings (pressure or flow)– increased WOB or auto-cycling Response time: time increment between when a patient effort is detected and when flow from the ventilator to the patient begins VC-CMC [set Vt, rate, flow to adjust I:E] PC-CMV (PCV) [set IP, rate, IT to adjust I:E] time cycled

Modes of Ventilation breath type and timing of breath delivery IMV / SIMV: periodic volume or pressure targeted breaths occur at set intervals (time triggered), between these mandatory breaths the patient breathes spontaneously at any desired baseline pressure without receiving a mandatory breath SIMV operates in the same way as IMV except that mandatory breaths are normally patient triggered rather than time triggered; at predetermined intervals the machine waits for the patients next spontaneous effort and then assists the patient by synchronously delivering a mandatory breath SIMV designed to avoid breath stacking Spontaneous breaths may be pressure supported Monitor WOB Potentially fewer cardiovascular side effects, may be used for weaning

Modes of Ventilation breath type and timing of breath delivery Spontaneous Modes Spontaneous breathing Breathing spontaneously through the ventilator circuit (Brigg’s adaptor, T-piece) Ventilator monitors the patient’s breathing and can activate alarms Some ventilators require considerable effort to open inspiratory valves to receive flow CPAP Spontaneously breathing through the ventilator circuit Improving oxygenation in patients with refractory hypoxemia and a low FRC PSV Special form of assisted ventilation, always patient triggered

Pressure Support Ventilation Ventilator provides a constant pressure during inspiration once it sense the patient’s effort The inspiratory pressure, CPAP, and sensitivity are set, Patient establishes the rate inspiratory flow and inspiratory time Vt is determined by the pressure gradient, lung characteristics, and patient effort PSV is used to: Overcome WOB Reduce WOB Provide full ventilatory support in the assist mode (PSmax)

Other Ventilator Modes Closed Loop Ventilation Bilevel PAP PRVC Paug Pressure augmentation, VAPS MMV APRV PAV Familiarize yourself with these (p 96-98).

Clinical Rounds 6-1 p. 84 What type of breath is it? A patient receives a breath that is patient triggered, pressure targeted and time cycled. What type of breath is it? This is a mandatory, pressure targeted, ventilator cycled breath A patient breathes spontaneously at a baseline pressure of 8cmH2O This is a spontaneous breath, patient triggered and cycled (CPAP)

Clinical Rounds 6-2 p. 86 Volume targeted breaths with Changing Lung Characteristics What is the approximate inspiratory time? About 1 sec What type of waveform is used? Constant flow waveform, descending ramp (decelerating) What is the approximate tidal volume delivery for each breath? Vt = 500ml What are the peak inspiratory pressures in A B and C? A = 14cmH2O; B = 25cmH2O; C = 12 cmH2O What types of lung or thoracic abnormalities can result in reduced compliance? Pneumonia ARDS pulmonary fibrosis/scarring ascites burns surgical incisions What would happen to the PIP if compliance went unchanged but airway resistance increased? PIP increases as more pressure is required to deliver the gas flow Figure 6-1 Graphs for constant flow, volume targeted ventilation; p. 86

Clinical Rounds 6-3 p. 87 Pressure targeted breaths with Changing Lung Characteristics What type of pressure curve is delivered in A, B, and C? The pressure curve is constant What type of flow waveform is present during inspiration in A, B, and C? A descending ramp (decelerating) Compare the flow-time curve during inspiration in C to that in A. What is the difference between the two? A drops to zero just at the end of inspiration; C drops to zero before the end of inspiration Look at the dotted line in C that starts at the flow waveform just when flow drops to zero during inspiration. Look at the volume-time curve (C). What do you notice about this volume-time curve compared to those in A and B? Why is it flat at the top? The volume curve in C has a short plateau at the top that begins when flow drops to zero during inspiration and ends when exhalation starts. It is flat because the volume is not changing. Why is volume delivery higher in B than in A? the lungs in B are more compliant than the lungs in A Figure 6-2 Graphs for pressure targeted Ventilation; p.87

Clinical Rounds 6-4 p. 89 Pressure or Volume Ventilation A physician wants to make sure that a patient’s PaCO2 stays at the normal level 50mmHg. Would volume or pressure ventilation best meet this requirement? Volume ventilation should be used since it guarantees volume delivery and minute ventilation. Ventilating pressure can become very high in patients with ARDS. To prevent excessive pressures, what independent variable would be most appropriate, volume or pressure? Pressure targeted ventilation since the goal is to avoid high pressures.