Nuclear Burning in Stars (E star ) ( E ) = S(E) e –2 E -1 Reaction Rate(star) (E) (E) dE Gamow Peak Maxwell Boltzmann Extrap.Meas. LUNA results Men in.

Slides:



Advertisements
Similar presentations
 s(E) = S(E) e–2ph E-1 s Laboratory for Underground
Advertisements

Carlo Broggini, INFN-Padova Nuclear Burning in Stars (E star ) ( E ) = S(E) e –2 E -1 2 cm m m m m Astrophysical Factor Gamow Factor Reaction Rate(star)
LUNALUNA Nucleosintesi stellare (E star ) (E) = S(E)/E e –2 2 cm m m m m Fattore astrofisico Interazioni(stella) (E) (E) dE Picco di Gamow Maxwell Boltzmann.
NuPECC - Milan Present and future of Laboratory Underground Nuclear Astrophysics Alba Formicola - Status of the D(, ) 6 Li measurement -Status of.
Nuclear Astrophysics Experiments in ATOMKI Gy. Gyürky Institute of Nuclear Research (ATOMKI) Debrecen, Hungary.
$100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300 $400 $500 $100 $200 $300.
Cuoricino results for 2 decay to the first excited state 0 + Sergio Di Domizio for the Cuoricino Collaboration Università and INFN Genova Athens, June.
Guenther Rosner FAIR - UK DL, 11/10/06 1 Collaboration Universität Basel, IHEP Beijing, [University of Birmingham] Ruhr- Universität Bochum,
Methods to directly measure non-resonant stellar reaction rates
NEWS: Nuclear Emulsion Wimp Search
Beyond the AGB (not in the sense of stellar evolution) My new
Underground Measurement of the 17O+p Reactions
Carlo Broggini, INFN-Padova Nuclear Burning in Stars  (E star )  ( E ) = S(E) e –2   E -1 2       m  m   m   m 
N2 – WP3 (Communication and outreach) Status Report R. Antolini, C. Tomei, N. Ferrari The LNGS open day 2005 The the “Quark” booklet The LSM film Plan.
R.A. Gough, J.R. Alonso: Workshop on Underground Accelerators Tucson, Oct 27-28, Accelerators (
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Stuttgart Dynamitron at Bucharest - Perspectives and New Activities
Text optional: Institutsname Prof. Dr. Hans Mustermann Mitglied der Leibniz-Gemeinschaft Direct measurement of the d( α, γ ) 6 Li cross-section.
The LUNA experiment: direct measurement of thermonuclear cross sections of astrophysical interest Alessandra Guglielmetti Universita’ degli Studi di Milano.
Status of the BOREXINO experiment Hardy Simgen Max-Planck-Institut für Kernphysik / Heidelberg for the BOREXINO collaboration.
Gianluca Imbriani Physics Department of University of Naples Federico II, Italian National Institute of Nuclear Physics (INFN) and Joint Institute of Nuclear.
Coulomb dissociation for astrophysics T. Gomi (RIKEN) 22Mg(p,γ)23Al
Electron screening: can metals simulate plasmas? Marialuisa Aliotta School of Physics - University of Edinburgh International Workshop XXXIV on Gross Properties.
Institute of Radiation Physics | Division of Nuclear Physics | Wilhelm und Else Heraeus-Seminar 6-10 February 2012 – Physikzentrum.
Laboratori Nazionali del Gran Sasso (LNGS) and ILIAS Nicola Ferrari Laboratori Nazionali del Gran Sasso IDM2004 Edinburgh, 10 September 2004 IDM2004 –
ALNA- Accelerator Laboratory for Nuclear Astrophysics Underground Heide Costantini University of Notre Dame, IN, USA INFN, Genova, Italy.
 ( E ) = S(E) e –2   E -1 2      m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann.
 ( E ) = S(E) e –2   E -1 2       m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann.
The GERDA experiment L. Pandola INFN, Gran Sasso National Laboratory for the GERDA Collaboration WIN2009, Perugia, September 17 th 2009.
ERNA: Measurement and R-Matrix analysis of 12 C(  ) 16 O Daniel Schürmann University of Notre Dame Workshop on R-Matrix and Nuclear Reactions in Stellar.
Experimental Nuclear Astrophysics: Key aspects & Open problems Marialuisa Aliotta School of Physics University of Edinburgh Nuclear Physics Autumn Retreat.
Electron Screening in deuterated targets ©Francesco Raiola Raiola Francesco, Fakultät für Physik und Astronomie Ruhr-Universität Bochum, D Bochum,
Phase I: Use available 76 Ge diodes from Heidelberg- Moscow and IGEX experiments (~18 kg). Scrutinize with high siginificance current evidence. Phase II:
1/38 Laboratory Underground Nuclear Astrophysics The D( 4 He,  ) 6 Li reaction at LUNA and the Big Bang Nucleosynthesis Carlo Gustavino For the LUNA collaboration.
L’esperimento LUNA- CdS MI luglio 2012 Alessandra Guglielmetti Università degli Studi di Milano e INFN, Milano, ITALY Laboratory Underground Nuclear Astrophysics.
Enter the DarkSide Stefano Davini University of Houston RICAP-13.
NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA D. Trezzi (for the LUNA collaboration) Università degli Studi di Milano | INFN – New Vistas in Low-Energy.
The LUNA experiment at Gran Sasso Laboratory: studying stars by going underground Alessandra Guglielmetti Università degli Studi di Milano and INFN, Milano,
 -capture measurements with a Recoil-Separator Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum Int. Workshop on Gross Properties.
Nuclear Physics in Astrophysics V, Eilat 3-8 April 2011 Hydrogen-burning reactions at astrophysically relevant energies Laboratory Underground Nuclear.
A flavour of INFN structure and projects
Laboratori Nazionali del Gran Sasso. Stefano Ragazzi – INFN LNGS & UNIMIB 3400 m.w.e. 1.1 μ / (m 2 h) Muon flux: m -2 s -1 Neutron flux: 2.92.
30 th ICRC – Merida - 10 July 2007C.Sbarra 1 The EEE Project Presented by Cristina Sbarra Project Leader: Antonino Zichichi ICRC,
22Ne(a,n)25Mg status and perspectives (for an underground experiment)
 s s 2ph = Z1Z2 m/E m = m1m2 / (m1+m2), E in keV
Nuclear Astrophysics at LUNA and the Big Bang Nucleosynthesis
5ATOMKI Debrecen, Hungary
Electron Screening in Metals
Stato dell’esperimento LUNA e del progetto LUNA MV- CdS MI luglio 2017
Problematics Present status Perspectives A. Lefebvre-Schuhl
György Gyürky Institute for Nuclear Research (Atomki)
Stars, Accelerators and Underground Laboratories
Why going underground g-background
for the LNL-Ganil collaboration
Zs. Fülöp ATOMKI, Debrecen, Hungary
Stato dell'esperimento LUNA
Laboratory for Underground Nuclear Astrophysics
status and perspectives
Alessandra Guglielmetti Universita’ degli Studi di Milano and
Underground Astrophysics at Surface Facilities: the Atomki case
György Gyürky Institute of Nuclear Research (Atomki) Debrecen, Hungary
Neutron production and monitoring at the new LUNA-MV facility
The D(4He,)6Li reaction at LUNA and the Big Bang Nucleosynthesis
The astrophysical p-process
V riunione nazionale di astrofisica nucleare
Stato dell’esperimento LUNA e del progetto LUNA MV- CdS MI giugno 2015
 s 2ph = Z1Z2 m/E m = m1m2 / (m1+m2), E in keV
 s(E) = S(E) e–2ph E-1 s Nuclear Burning in Stars s(Estar) s
Elastic alpha scattering experiments
Presentation transcript:

Nuclear Burning in Stars (E star ) ( E ) = S(E) e –2 E -1 Reaction Rate(star) (E) (E) dE Gamow Peak Maxwell Boltzmann Extrap.Meas. LUNA results Men in pits or wells sometimes see the stars…. Aristotle Carlo Broggini, INFN-Pd

INFN - Laboratori Nazionali del Gran Sasso D.Bemmerer,R.Bonetti,C.Broggini*,F. Confortola,P.Corvisiero,H.Costantini,Z.Elekes, A.Formicola, Z. Fülöp, G.Gervino,A.Guglielmetti, C.Gustavino, G. Gyurky, G. Imbriani, M.Junker, A.Lemut, B.Limata, V.Lozza,M.Marta,R.Menegazzo, P.Prati, V.Roca, C.Rolfs, M.Romano, C.RossiAlvarez, O.Straniero,F.Strieder, E.Somorjai,F.Terrasi,H.P.Trautvetter INFN : Genova, LNGS, Milano, Napoli, Padova, Torino Inst.Physik mit Ionenstrahlen, Ruhr- Universität Bochum (GE) Atomki Debrecen (Hungary) LUNA

luna Voltage Range : kV Output Current: 1 mA 400 kV) Absolute Energy error ±300 eV Beam energy spread: <100 eV Long term stability (1 h) : 5 eV Terminal Voltage ripple: 5 Vpp Ge detector F = 0.7 m -2 h -1 FnFn cm -2 s -1

p + p d + e + + e d + p 3 He + 3 He + 3 He +2p 3 He + 4 He 7 Be + 7 Be+e - 7 Li + + e 7 Be + p 8 B + 7 Li + p 8 B 2 + e + + e 84.7 %13.8 % % 0.02% pp chain

14 N(p, g ) 15 O Q=7.3 MeV N+p O 1/2 + 7/2 + 5/2 + 3/2 + 3/2 - 5/2 + 1/2 + 1/2 -

10 -7 mbar10 -6 mbar10 -4 mbar mbar Windowless gas-target Max 10 mbar Low energy: gas target + BGO

Reaction Rate = counts/day Background rate = counts/day t = daysQ = C beam energy: 80 keV

cno from the Sun Globular cluster age C yield in AGB stars S t (0)=1.61±0.08±0.16 keV b

3 He(, g ) 7 Be Solar Neutrinos: 7 Be, 8 B BBN 7 Li prompt gammaCross section from prompt gamma down to 90 keV (CM energy) using 4 He beam on 3 He target radioactive decayActivation via off-line radioactive decay measurements of the 7 Be atoms collected in the beam catcher All with a final error < 5 % Q=1.6 MeV

Summary of previous measurements = 0.51 ± 0.02 keV b = 0.57 ± 0.03 keV b 0.53 ± 0.05 keV b (9%) [Adelberger 98] 0.54 ± 0.09 keV b (16%) [NACRE 99] Recommended S 34 (0) values: R-matrix analysis: 0.51 ± 0.04 keV b (8%) [Descouvemont 2004]

Activation measurement o 4 He 350 keV o ~ 230 µA oRecirculated mbar Bi 7 Be

SourceDeterminationRelative Uncertainty Detector efficiencyMeasured1.8 % Beam currentCalibrated calorimeter1.5 % Beam heating effectMeasured (typical correction: 5%) 1.3 % Target thicknessPressure and temperature measurements 0.6 % Backscattering lossMeasured and simulated (typical correction: 2.1%) 0.5 % 478 keV -ray branchingFrom literature0.4 % Incomplete 7 Be collectionMeasured and simulated (typical correction: 1.6%) 0.4% Effective energyMeasured % Parasitic 7 Be productionMeasured upper limit0.04 % Sputtering lossUpper limit from MC Simulation0.02 % Total3.0 % Systematic uncertainties and corrections

Prompt -spectra o 4 He 400 keV o ~ 300 µA oIrradiation time: 4.4d o 4 He 220 keV o ~ 240 µA oIrradiation time: 24.4d

3 He(, g ) 7 Be: the Sun: 7 Be and 8 B neutrinos Big-Bang 7 Li 14 N(p, g ) 15 O: down to 70 keV (T=60 T 6 ) cno from the Sun reduced by 2 Globular cluster age increased by Gy Higher C yield in AGB stars LUNA has shown that it is possible to measure (E star ): 3 He ( 3 He,2p) 4 He, 2 H(p, g ) 3 He 3 He ( 3 He,2p) 4 He: down to 16 keV no resonance within the solar Gamow Peak

S 14,1 /5 S 14,1 x5 Standard CF88

25 Mg(p, g ) 26 Al Q=6.3 MeV Nucleosynthesis Mg-Al Astronomical interest of the from 26 Al decay Ge detectorsCross section at keV (CM energy) using Ge detectors (not underground) BGO summing crystalsCross section at lower energies using BGO summing crystals (underground)