Computational Entropy Joint works with Iftach Haitner (Tel Aviv), Thomas Holenstein (ETH Zurich), Omer Reingold (MSR-SVC), Hoeteck Wee (George Washington.

Slides:



Advertisements
Similar presentations
Merkle Puzzles Are Optimal
Advertisements

On Black-Box Separations in Cryptography Omer Reingold Closed captioning and other considerations provided by Tal Malkin, Luca Trevisan, and Salil Vadhan.
On Black-Box Separations in Cryptography
Finding Collisions in Interactive Protocols A Tight Lower Bound on the Round Complexity of Statistically-Hiding Commitments Iftach Haitner, Jonathan Hoch,
Randomness Extractors & their Cryptographic Applications Salil Vadhan Harvard University
Computational Analogues of Entropy Boaz Barak Ronen Shaltiel Avi Wigderson.
Statistical Zero-Knowledge Arguments for NP from Any One-Way Function Salil Vadhan Minh Nguyen Shien Jin Ong Harvard University.
Derandomization & Cryptography Boaz Barak, Weizmann Shien Jin Ong, MIT Salil Vadhan, Harvard.
Approximate List- Decoding and Hardness Amplification Valentine Kabanets (SFU) joint work with Russell Impagliazzo and Ragesh Jaiswal (UCSD)
Inaccessible Entropy Iftach Haitner Microsoft Research Omer Reingold Weizmann & Microsoft Hoeteck Wee Queens College, CUNY Salil Vadhan Harvard University.
1 Efficient Pseudorandom Generators from Exponentially Hard One-Way Functions Iftach Haitner, Danny Harnik, Omer Reingold.
Inaccessible Entropy Iftach Haitner Microsoft Research Omer Reingold Weizmann Institute Hoeteck Wee Queens College, CUNY Salil Vadhan Harvard University.
1 Reducing Complexity Assumptions for Statistically-Hiding Commitment Iftach Haitner Omer Horviz Jonathan Katz Chiu-Yuen Koo Ruggero Morselli Ronen Shaltiel.
Foundations of Cryptography Lecture 10 Lecturer: Moni Naor.
The Complexity of Zero-Knowledge Proofs Salil Vadhan Harvard University.
1 Identity-Based Zero-Knowledge Jonathan Katz Rafail Ostrovsky Michael Rabin U. Maryland U.C.L.A. Harvard U.
Why Simple Hash Functions Work : Exploiting the Entropy in a Data Stream Michael Mitzenmacher Salil Vadhan.
F(x 1 )h h( x 1 ) 1 … n+|h|+ 1 bits of next-block pseudoentropy f(x 2 )h h( x 2 )f(x t )h h( x t ) g(x t,h t )= g(x 2,h 2 )= g(x 1,h 1 )= G(x 1,h 1 …,x.
Inaccessible Entropy Iftach Haitner Microsoft Research Omer Reingold Weizmann & Microsoft Hoeteck Wee Queens College, CUNY Salil Vadhan Harvard University.
The Many Entropies of One-Way Functions Thomas Holenstein Iftach Haitner Salil VadhanHoeteck Wee Joint With Omer Reingold.
Better Pseudorandom Generators from Milder Pseudorandom Restrictions Raghu Meka (IAS) Parikshit Gopalan, Omer Reingold (MSR-SVC) Luca Trevian (Stanford),
Notation Intro. Number Theory Online Cryptography Course Dan Boneh
Using Nondeterminism to Amplify Hardness Emanuele Viola Joint work with: Alex Healy and Salil Vadhan Harvard University.
Foundations of Cryptography Lecture 8: Application of GL, Next-bit unpredictability, Pseudo-Random Functions. Lecturer: Moni Naor Announce home )deadline.
On the (Im)Possibility of Key Dependent Encryption Iftach Haitner Microsoft Research TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
Yi Wu (CMU) Joint work with Parikshit Gopalan (MSR SVC) Ryan O’Donnell (CMU) David Zuckerman (UT Austin) Pseudorandom Generators for Halfspaces TexPoint.
A Parallel Repetition Theorem for Any Interactive Argument Iftach Haitner Microsoft Research TexPoint fonts used in EMF. Read the TexPoint manual before.
The Bright Side of Hardness Relating Computational Complexity and Cryptography Oded Goldreich Weizmann Institute of Science.
Simple Extractors for All Min-Entropies and a New Pseudo-Random Generator Ronen Shaltiel (Hebrew U) & Chris Umans (MSR) 2001.
Foundations of Cryptography Lecture 5: Signatures and pseudo-random generators Lecturer: Moni Naor.
ACT1 Slides by Vera Asodi & Tomer Naveh. Updated by : Avi Ben-Aroya & Alon Brook Adapted from Oded Goldreich’s course lecture notes by Sergey Benditkis,
Princeton University COS 433 Cryptography Fall 2005 Boaz Barak COS 433: Cryptography Princeton University Fall 2005 Boaz Barak Lecture 2: Perfect Secrecy.
GOING DOWN HILL: MORE EFFICIENT PSEUDORANDOM GENERATORS FROM ANY ONE-WAY FUNCTION Joint with Iftach Haitner and Salil Vadhan Omer Reingold&
The Power of Randomness in Computation 呂及人中研院資訊所.
The Many Entropies of One-Way Functions Thomas Holenstein Iftach Haitner Salil VadhanHoeteck Wee Joint With Omer Reingold.
Princeton University COS 433 Cryptography Fall 2005 Boaz Barak COS 433: Cryptography Princeton University Fall 2005 Boaz Barak Lecture 2: Perfect Secrecy.
1 A New Interactive Hashing Theorem Iftach Haitner and Omer Reingold WEIZMANN INSTITUTE OF SCIENCE.
1 On the Power of the Randomized Iterate Iftach Haitner, Danny Harnik, Omer Reingold.
Foundations of Cryptography Lecture 9 Lecturer: Moni Naor.
Foundations of Cryptography Lecture 8 Lecturer: Moni Naor.
Foundations of Cryptography Rahul Jain CS6209, Jan – April 2011
CMSC 414 Computer and Network Security Lecture 3 Jonathan Katz.
GOING DOWN HILL : EFFICIENCY IMPROVEMENTS IN CONSTRUCTING PSEUDORANDOM GENERATORS FROM ONE-WAY FUNCTIONS Iftach Haitner Omer Reingold Salil Vadhan.
Entropy-based Bounds on Dimension Reduction in L 1 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A AAAA A Oded Regev.
Can we base cryptography on SZK-Hardness? Salil Vadhan Harvard University.
Completeness in Two-Party Secure Computation Revisited Danny Harnik Moni Naor Omer Reingold Alon Rosen Weizmann Institute of Science AT&T IAS.
Quantum Computing MAS 725 Hartmut Klauck NTU TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A.
Topic 22: Digital Schemes (2)
Computational Entropy Joint works with Iftach Haitner (Tel Aviv), Thomas Holenstein (ETH Zurich), Omer Reingold (MSR-SVC), Hoeteck Wee (George Washington.
On Constructing Parallel Pseudorandom Generators from One-Way Functions Emanuele Viola Harvard University June 2005.
Fall 2004/Lecture 201 Cryptography CS 555 Lecture 20-b Zero-Knowledge Proof.
Using Nondeterminism to Amplify Hardness Emanuele Viola Joint work with: Alex Healy and Salil Vadhan Harvard University.
Some Fundamental Insights of Computational Complexity Theory Avi Wigderson IAS, Princeton, NJ Hebrew University, Jerusalem.
1 How to Prove that Minicrypt=Cryptomania (in the future) Danny Harnik Moni Naor.
15-499Page :Algorithms and Applications Cryptography I – Introduction – Terminology – Some primitives – Some protocols.
On Constructing Parallel Pseudorandom Generators from One-Way Functions Emanuele Viola Harvard University June 2005.
Honest-Verifier Statistical Zero-Knowledge Equals General Statistical Zero-Knowledge Oded Goldreich (Weizmann) Amit Sahai (MIT) Salil Vadhan (MIT)
Dan Boneh Stream ciphers PRG Security Defs Online Cryptography Course Dan Boneh.
Pseudo-random generators Talk for Amnon ’ s seminar.
Iftach Haitner and Eran Omri Coin Flipping with Constant Bias Implies One-Way Functions TexPoint fonts used in EMF. Read the TexPoint manual before you.
Does Privacy Require True Randomness? Yevgeniy Dodis New York University Joint work with Carl Bosley.
Almost SL=L, and Near-Perfect Derandomization Oded Goldreich The Weizmann Institute Avi Wigderson IAS, Princeton Hebrew University.
Derandomization & Cryptography
Cryptography Lecture 19.
Conditional Computational Entropy
On the Efficiency of 2 Generic Cryptographic Constructions
Cryptography Lecture 14.
Cryptographic Applications of Randomness Extractors
Cryptography Lecture 3.
Cryptography Lecture 15.
Presentation transcript:

Computational Entropy Joint works with Iftach Haitner (Tel Aviv), Thomas Holenstein (ETH Zurich), Omer Reingold (MSR-SVC), Hoeteck Wee (George Washington U.), and Colin Jia Zheng (Harvard) TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAA A Salil Vadhan Harvard University (on sabbatical at MSR-SVC and Stanford)

How I came to work on Pseudorandomness  Fall 93: CS226r “Efficient Algorithms,” Prof. M. Rabin –“The R word plays a role” –I am amazed by the power of randomness.  Spring 95: S. Rudich tells me about evidence that P=BPP. –I am skeptical.  : I learn about pseudorandom generators & derandomization. –I need to work on this too!

One-Way Functions [DH76]  Candidate: f(x,y) = x ¢ y Formally, a OWF is f : {0,1} n ! {0,1} n s.t.  f poly-time computable  8 poly-time A Pr[A(f(X)) 2 f -1 (f(X))] = 1/n ! (1) for X Ã {0,1} n x f(x) easy hard

OWFs & Cryptography one-way functions pseudorandom generators target-collision-resistant hash functions (UOWHFs) statistically hiding commitments pseudorandom functions statistically binding commitments zero-knowledge proofs statistical ZK arguments private-key encryption MACs digital signatures secure protocols & applications [HILL90] [R90] [HNORV07] [GGM86] [N89] [GMW86] [NY89][BCC86]

OWFs & Cryptography one-way functions pseudorandom generators target-collision-resistant hash functions (UOWHFs) statistically hiding commitments pseudorandom functions statistically binding commitments zero-knowledge proofs statistical ZK arguments private-key encryption MACs digital signatures secure protocols & applications [HILL90] [R90] [HNORV07] [GGM86] [N89] [GMW86] [NY89][BCC86]

Computational Entropy [Y82,HILL90,BSW03] Question: How can we use the “raw hardness” of a OWF to build useful crypto primitives? Answer (today’s talk):  Every crypto primitive amounts to some form of “computational entropy”.  One-way functions already have a little bit of “computational entropy”.

Entropy Def: The Shannon entropy of r.v. X is H(X) = E x à X [log(1/Pr[X=x)]  H(X) = “Bits of randomness in X (on avg)”  0 · H(X) · log |Supp(X)|  Conditional Entropy: H(X|Y) = E y à Y [H(X| Y=y )] X concentrated on single point X uniform on Supp(X)

Conditional Entropy H(X|Y) = E y à Y [H(X| Y=y )]  Chain Rule: H(X,Y) = H(Y) + H(X|Y)  H(X)-H(Y) · H(X|Y) · H(X)  H(X|Y) = 0 iff 9 f X=f(Y).

Worst-Case Entropy Measures  Min-Entropy: H 1 (X) = min x log(1/Pr[X=x])  Max-Entropy: H 0 (X) = log |Supp(X)| H 1 (X) · H(X) · H 0 (X)

Computational Entropy  A poly-time algorithm may “perceive” the entropy of X to be very different from H(X).  Example: a pseudorandom generator G: {0,1} m ! {0,1} n –G(U m ) is computationally indistinguishable from U n –But H(G(U m )) · m.

Pseudoentropy Def [HILL90]: X has pseudoentropy ¸ k iff there exists a random variable Y s.t. 1.Y ´ c X 2.H(Y) ¸ k Interesting when k > H(X), i.e. Pseudoentropy > Real Entropy

OWFs & Cryptography one-way functions pseudorandom generators target-collision-resistant hash functions (UOWHFs) statistically hiding commitments pseudorandom functions statistically binding commitments zero-knowledge proofs statistical ZK arguments private-key encryption MACs digital signatures secure protocols & applications [HILL90] [R90] [HNORV07] [GGM86] [N89] [GMW86] [NY89][BCC86] pseudoentropy

Application of Pseudoentropy Thm [HILL90]: 9 OWF ) 9 PRG Proof idea: OWF X with pseudo-min-entropy ¸ H 0 (X)+poly(n) X with pseudoentropy ¸ H(X)+1/poly(n) PRG to discuss repetitions hashing

Pseudoentropy from OWF  Intuition: for a 1-1 OWF f and X Ã {0,1} n –H(X|f(X))=0, but – 8 poly-time A Pr[A(f(X))=X] = 1/n ! (1) = 1/2 ! (log n) ) X has “unpredictability entropy” ! (log n) given f(X) [HLR07]  Challenges: –How to turn “unpredictability” into “pseudoentropy”? –When f not 1-1, unpredictability can be trivial.

Pseudoentropy from OWF  Thm [HILL90]: W=(f(X),H,H(X) 1,…H(X) J ) has pseudoentropy ¸ H(W)+ ! (log n)/n, where H : {0,1} n ! {0,1} n is a certain kind of hash function, X Ã {0,1} n, J Ã {1,…,n}.  Thm [HRV10,VZ11]: (f(X),X 1,…,X n ) has “next-bit pseudoentropy” ¸ n+ ! (log n). –No hashing! –Total amount of pseudoentropy known & > n. –Get full ! (log n) bits of pseudoentropy.

Next-bit Pseudoentropy  Thm [HRV10,VZ11]: (f(X),X 1,…,X n ) has “next-bit pseudoentropy” ¸ n+ ! (log n).  Note: (f(X),X) easily distinguishable from every random variable of entropy > n.  Next-bit pseudoentropy: 9 (Y 1,…,Y n ) s.t. –(f(X),X 1,…,X i ) ´ c (f(X),X 1,…,X i-1,Y i ) – H(f(X))+  i H(Y i |f(X),X 1,…,X i-1 ) = n+ ! (log n).

Consequences  Simpler and more efficient construction of pseudorandom generators from one-way functions.  [HILL90,H06]: OWF f of input length n ) PRG G of seed length O(n 8 ).  [HRV10,VZ11]: OWF f of input length n ) PRG G of seed length O(n 3 ).

Unpredictability ) Pseudoentropy [previous work] Assume: Z has unpredictability entropy ¸ k given Y (i.e. 8 poly-time A Pr[A(Y)=Z] · 2 -k ).  [Y82]: If k ¼ |Z|, then (Y,Z) ´ c (Y,U k )  [GL89,HLR07]: (Y,H,H(Z)) ´ c (Y,H,U k- ! (log n) )  [I95,H05]: If |Z|=1, then 9 Z’ of “average min- entropy [DORS04]” k given X s.t. (X,Z) ´ c (X,Z’) Coping with info-theoretic unpredictability of X given f(X)?  [ HILL90] Use Leftover Hash Lemma to analyze prefix of (f(X),H,H(X) 1,…H(X) J ).

Pseudoentropy, Hardness of Sampling  Thm [VZ11]: Let (Y,Z) 2 {0,1} n £ {0,1} O(log n). Z has pseudoentropy ¸ H(Z|Y)+k given Y m There is no probabilistic poly-time A s.t. D((Y,Z)||(Y,A(Y)) · k. [D = Kullback-Liebler Divergence]  Proof: variant of proofs of Impagliazzo’s Hardcore Lemma [I95,N95,H05,BHK09].

Pseudoentropy, Hardness of Sampling  Thm [VZ11] : Let (Y,Z) 2 {0,1} n £ {0,1} O(log n). Z has pseudoentropy ¸ H(Z|Y)+k given Y m There is no probabilistic poly-time A s.t. D((Y,Z)||(Y,A(Y)) · k.  Cor [HRV10,VZ11] : (f(X),X 1,…,X n ) has next-bit pseudoentropy n+ ! (log n).

OWFs & Cryptography one-way functions pseudorandom generators target-collision-resistant hash functions (UOWHFs) statistically hiding commitments pseudorandom functions statistically binding commitments zero-knowledge proofs statistical ZK arguments private-key encryption MACs digital signatures secure protocols & applications [HRV10, VZ11] [R90] [HNORV07] [GGM86] [N89] [GMW86] [NY89][BCC86] next-bit pseudoentropy

OWFs & Cryptography one-way functions pseudorandom generators target-collision-resistant hash functions (UOWHFs) statistically hiding commitments pseudorandom functions statistically binding commitments zero-knowledge proofs statistical ZK arguments private-key encryption MACs digital signatures secure protocols & applications [HRV10, VZ11] [GGM86] [N89] [GMW86] [NY89][BCC86] next-bit pseudoentropy inaccessible entropy [HRVW09, HHRVW10]

Inaccessible Entropy [HRVW09,HHRVW10]  Example: if h : {0,1} n ! {0,1} n-k is collision- resistant and X Ã {0,1} n, then –H(X|h(X)) ¸ k, but –To an efficient algorithm, once it produces h(X), X is determined ) “accessible entropy” 0. –Accessible entropy ¿ Real Entropy!  Thm [HRVW09]: f a OWF ) (f(X) 1,…,f(X) n,X) has accessible entropy n- ! (log n). –Cf. (f(X),X 1,…,X n ) has pseudoentropy n+ ! (log n).

Conclusion Complexity-based cryptography is possible because of gaps between real & computational entropy. “Secrecy” pseudoentropy > real entropy “Unforgeability” accessible entropy < real entropy

Research Directions  Formally unify inaccessible entropy and pseudoentropy.  OWF f : {0,1} n ! {0,1} n ) Pseudorandom generators of seed length O(n)?  More applications of inaccessible entropy in crypto or complexity.