Lesson 1: The Nature of Gases UNIT 9 – GAS LAWS Chapter 13 and 14.

Slides:



Advertisements
Similar presentations
I. Physical Properties (p ) Ch. 10 & 11 - Gases.
Advertisements

I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume have elastic collisions are in constant,
III. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume have elastic collisions are in constant,
I. Physical Properties (p )
Kinetic Molecular Theory. What if… b Left a basketball outside in the cold… would the ball appear to be inflated or deflated? b Which picture box do you.
I. Physical Properties Ch 12.1 & 13 Gases. Kinetic Molecular Theory 1. Particles of matter are ALWAYS in motion 2. Volume of individual particles is 
Think About This… Gas Atmosphere This is a U-Tube Manometer. The red stuff is a liquid that moves based on the pressures on each end of the tube. Based.
Physical Properties Unit 5: Gases Unit 5: Gases. StandardsStandards b 4a. Students know the random motion of molecules and their collisions with a surface.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
C. Johannesson I. Physical Properties (p ) Ch. 10 & 11 - Gases.
CH 11 – Physical Characteristics of Gases: Objectives Describe how the kinetic-molecular theory of matter explains ideal gases Differentiate between ideal.
Gases. Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight-line motion. don’t attract or repel each.
Properties and Measuring Variables Gases Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are.
Ch. 10 Gases. Characteristics of Gases b Gases expand to fill any container. random motion, no attraction b Gases are fluids (like liquids). no attraction.
A theory concerning the thermodynamic behavior of matter, especially the relationships among pressure, volume, and temperature in gases. Kinetic Molecular.
The Properties of Gases. Properties of Gases 1. Gases expand to fill the container. 2. Gases take on the shape of the container. 3. Gases are highly compressible.
Gases. Characteristics of Gases Gases are fluids Gases are fluids –In other words, they can flow. Gases have low density Gases have low density –Most.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
I. Physical Properties Ch Gases. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
? Gases Chapter 4. ? Kinetic Molecular Theory Particles in an Ideal Gases…  have no volume.  have elastic collisions.  are in constant, random, straight-line.
Chapter 11 The Nature of Gases & Measuring Gases Pages
AssignmentAssignment b Complete pre-assessment test. b Read Chapter 10, pp , and define vocabulary.
Physical Properties Gases. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. The particles in a gas are very far apart. have elastic.
Chapter 5 Gas- matter that has no definite shape or volume, takes both the shape and volume of its container Kinetic Theory of Gases -states that tiny.
I. Physical Properties Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random,
I. Physical Properties. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight-
I. Physical Properties Gases. A. Kinetic Molecular Theory b kinetic-molecular theory: (def) theory of the energy of particles and the forces that.
Physical Properties Ch. 10 & 11 - Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
Ch. 10 Gases. Characteristics of Gases b Gases expand to fill any container. random motion, no attraction b Gases are fluids (like liquids). no attraction.
Lesson 1: Basic Terminology This lesson reviews terms used to describe the properties and behavior of gases. NEXT MAIN MENU.
I. Physical Properties Gases Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no (very small) volume. have elastic collisions. are.
Gases Gas Animations. Kinetic Molecular Theory Particles in an ideal gas… –have no volume. –have elastic collisions. –are in constant, random, straight-line.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant,
I. Physical Properties Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random,
Physical Properties Gases. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight-
Agenda Behavior of Gases Gas Laws Gas Laws Worksheet.
Kinetic Molecular Theory Images taken from
The Kinetic Molecular Theory Monday, April 25 th, 2016.
I. Physical Properties Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have no volume. The particles in a gas are very far apart. have.
The Property of Gases – Kinetic Molecular Theory explains why gases behave as they do
Ideal Gas Law Gases. C. Characteristics of Gases b Gases expand to fill any container. random motion, no attraction b Gases are fluids (like liquids).
I. Physical Properties (p. 399 – 402, ) Ch Gases Gases notes #1 - gas properties.ppt.
The Gas Laws 1. A gas is composed of particles molecules or atoms – hard spheres far enough apart- ignore volume Empty space The Kinetic Theory of Gases.
I. Physical Properties I. Gases I. Gases. Nature of Gases b Gases have mass. b They can be compressed. b They completely fill their containers. b Representative.
I. Physical Properties Ch Gases. A. Kinetic Molecular Theory b Particles in an ideal gas… have mass but no definite volume. have elastic collisions.
Introduction to Gas Laws Chapter 14 Benchmark 4. Pressure The force per unit area that the particles in the gas exert on the walls of their container.
A. Kinetic Molecular Theory
Gases.
I. Physical Properties (p )
Ch.12- Gases I. Physical Properties.
I. Physical Properties (p )
I. Physical Properties (p )
Gases I. Physical Properties.
I. Physical Properties (p )
Gas laws.
Gases Physical Properties.
I. Physical Properties (p )
I. Physical Properties (p. 303 – 312 in school)
Gases I. Physical Properties 9 (A) describe and calculate the relations between volume, pressure, number of moles, and temperature for an ideal gas as.
Ch Gases I. Physical Properties.
Chapter 1 Lesson 3 Mrs. Brock RJMS
Kinetic Molecular Theory
Unit 8 - Gases Chapter 13.1 and Chapter 14.
Ch Gases I. Physical Properties.
Ch Gases I. Physical Properties.
Gases Physical Properties.
Unit 8 - Gases Chapter 13.1 and Chapter 14.
Chapter 7-1, 7-2.
Gases and Laws – Unit 2 Version
Presentation transcript:

Lesson 1: The Nature of Gases UNIT 9 – GAS LAWS Chapter 13 and 14

Kinetic Molecular Theory Kinetic Molecular Theory b In order to understand gases you must understand the Kinetic Molecular Theory. b The KMT assumes the following concepts about an ideal gas:

Kinetic Molecular Theory Kinetic Molecular Theory b Particles in an ideal gas… have no volume. have elastic collisions. are in constant, random, straight- line motion. don’t attract or repel each other. have an avg. KE directly related to Kelvin temperature.

Real Gases Real Gases b Real Gas behavior is most ideal… at low pressures at high temperatures in nonpolar atoms/molecule

Characteristics of Gases based on KMT Characteristics of Gases based on KMT b Particles in an real gas… have their own volume attract each other b Gases expand to fill any container. random motion, no attraction

Characteristics of Gases based on KMT Characteristics of Gases based on KMT b Gases are fluids (like liquids). no attraction b Gases have very low densities. no volume = lots of empty space

Characteristics of Gases based on KMT Characteristics of Gases based on KMT b Gases can be compressed. no volume = lots of empty space b Gases undergo diffusion & effusion. random motion

Pressure Pressure Fluids - Liquids Gases Because of their nature exert pressure in all directions Gas pressure is the result of gas particles colliding with the walls of their container.

Measuring Gas Pressure b Barometer measures atmospheric pressure Mercury Barometer Aneroid Barometer

Measuring Gas Pressure b Manometer measures contained gas pressure U-tube ManometerBourdon-tube gauge

Measuring Gas Pressure b All of these units are equivalent kPa (kilopascal-SI Unit) is equal to 1 atm (atmosphere) is equal to 760 mm Hg is equal to 760 torr is equal to 14.7 psi (pounds per square inch)

Practice Conversions b Convert atm to mmHg torr kPa

Practice Conversions b Convert kPa to b atm b mmHg b torr

STP STP Standard Temperature & Pressure 0°C 273 K 1 atm kPa -OR- STP