R OUTING IN THE INTERNET. A UTONOMOUS SYSTEM ( AS ) Collections of routers that has the same protocol, administative and technical control Intra-AS routing.

Slides:



Advertisements
Similar presentations
Network Layer4-1 Hierarchical Routing scale: with 200 million destinations: r can’t store all dest’s in routing tables! r routing table exchange would.
Advertisements

Lecture 9 Overview. Hierarchical Routing scale – with 200 million destinations – can’t store all dests in routing tables! – routing table exchange would.
Path Vector Routing NETE0514 Presented by Dr.Apichan Kanjanavapastit.
© J. Liebeherr, All rights reserved 1 Border Gateway Protocol This lecture is largely based on a BGP tutorial by T. Griffin from AT&T Research.
Data Communications and Computer Networks Chapter 4 CS 3830 Lecture 22 Omar Meqdadi Department of Computer Science and Software Engineering University.
1 Interdomain Routing Protocols. 2 Autonomous Systems An autonomous system (AS) is a region of the Internet that is administered by a single entity and.
Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What’s inside a router 4.4 IP: Internet Protocol –Datagram format.
Lecture 8 Overview. Graph abstraction u y x wv z Graph: G = (N,E) N = set of routers = { u, v, w, x, y, z } E = set of links ={ (u,v),
4a-1 CSE401: Computer Networks Hierarchical Routing & Routing in Internet S. M. Hasibul Haque Lecturer Dept. of CSE, BUET.
0 TDTS41 Computer Networks Lecture 4: Network layer I Claudiu Duma, IISLAB/IDA Linköpings universitet.
Network Layer4-1 Chapter 4 roadmap 4.1 Introduction and Network Service Models 4.2 Routing Principles 4.3 Hierarchical Routing 4.4 The Internet (IP) Protocol.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Network Routing: algorithms & protocols
1 Announcement r Project #2 due midnight r Homework #3 due Friday midnight r Project #3 is out.
Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet Protocol m Datagram.
Routing Algorithms and Routing in the Internet
14 – Inter/Intra-AS Routing
Review r The Internet (IP) Protocol m Datagram format m IP fragmentation m ICMP: Internet Control Message Protocol m NAT: Network Address Translation r.
Routing Algorithms & Routing Protocols  Shortest Path Routing  Flooding  Distance Vector Routing  Link State Routing  Hierarchical Routing  Broadcast.
Network Layer 4-1 Chapter 4 Network Layer. Network Layer 4-2 Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3.
1 ECE453 – Introduction to Computer Networks Lecture 10 – Network Layer (Routing II)
Lecture 10 Overview. Border Gateway Protocol(BGP) De facto standard for Internet inter-AS routing allows subnet to advertise its existence to rest of.
Transport Layer 3-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012  CPSC.
14 – Inter/Intra-AS Routing Network Layer Hierarchical Routing scale: with > 200 million destinations: can’t store all dest’s in routing tables!
CSC 450/550 Part 4: Network Layer Part B: The Internet Routing Protocols.
I-4 routing scalability Taekyoung Kwon Some slides are from Geoff Huston, Michalis Faloutsos, Paul Barford, Jim Kurose, Paul Francis, and Jennifer Rexford.
1 Computer Communication & Networks Lecture 22 Network Layer: Delivery, Forwarding, Routing (contd.)
Network Layer introduction 4.2 virtual circuit and datagram networks 4.3 what’s inside a router 4.4 IP: Internet Protocol  datagram format  IPv4.
Introduction 1 Lecture 21 Network Layer (Routing Activity) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science &
CS 3700 Networks and Distributed Systems Inter Domain Routing (It’s all about the Money) Revised 8/20/15.
RSC Part II: Network Layer 6. Routing in the Internet (2 nd Part) Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are,
Introduction 1 Lecture 19 Network Layer (Routing Protocols) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science &
CS 3830 Day 29 Introduction 1-1. Announcements r Quiz 4 this Friday r Signup to demo prog4 (all group members must be present) r Written homework on chapter.
10-1 Last time □ Transitioning to IPv6 ♦ Tunneling ♦ Gateways □ Routing ♦ Graph abstraction ♦ Link-state routing Dijkstra's Algorithm ♦ Distance-vector.
Homework 4 r Out: Fri 2/27/2015 r In: Fri 3/13/2015.
Border Gateway Protocol
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Network Layer r Introduction r Datagram networks r IP: Internet Protocol m Datagram format m IPv4 addressing m ICMP r What’s inside a router r Routing.
1 Mao W07 Interdomain Routing Broadcast routing EECS 489 Computer Networks Z. Morley Mao Monday Feb 12, 2007.
Network Layer4-1 Intra-AS Routing r Also known as Interior Gateway Protocols (IGP) r Most common Intra-AS routing protocols: m RIP: Routing Information.
TCOM 509 – Internet Protocols (TCP/IP) Lecture 06_a Routing Protocols: RIP, OSPF, BGP Instructor: Dr. Li-Chuan Chen Date: 10/06/2003 Based in part upon.
ICT 6621 : Advanced NetworkingKhaled Mahbub, IICT, BUET, 2008 Lecture 5 TCP/IP Network Layer (3)
4: Network Layer4b-1 OSPF (Open Shortest Path First) r “open”: publicly available r Uses Link State algorithm m LS packet dissemination m Topology map.
Routing in the Inernet Outcomes: –What are routing protocols used for Intra-ASs Routing in the Internet? –The Working Principle of RIP and OSPF –What is.
Transport Layer3-1 Network Layer Every man dies. Not every man really lives.
Network Layer4-1 Routing Algorithm Classification Global or decentralized information? Global: r all routers have complete topology, link cost info r “link.
CS 1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Jack Lange.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Border Gateway Protocol. Intra-AS v.s. Inter-AS Intra-AS Inter-AS.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
Network Layer introduction 4.2 virtual circuit and datagram networks 4.3 what’s inside a router 4.4 IP: Internet Protocol  datagram format  IPv4.
Network Layer4-1 Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 IP: Internet Protocol Datagram format IPv4 addressing.
Application Layer 2-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A.
Routing in the Internet
14 – Inter/Intra-AS Routing
Chapter 4: Network Layer
Homework 4 Out: Fri 2/26/2016 In: Fri 3/11/2016.
Border Gateway Protocol
Chapter 4: Network Layer
BGP Overview BGP concepts and operation.
Routers Routing algorithms
Chapter 4: Network Layer
Chapter 4: Network Layer
Chapter 4: Network Layer
CMPE 252A : Computer Networks
Computer Networks Protocols
Network Layer: Internet Inter-Domain Routing
Presentation transcript:

R OUTING IN THE INTERNET

A UTONOMOUS SYSTEM ( AS ) Collections of routers that has the same protocol, administative and technical control Intra-AS routing Inter-AS routing 3b 1d 3a 1c 2a AS3 AS1 AS2 1a 2c 2b 1b 3c

I NTRA -AS R OUTING also known as Interior Gateway Protocols (IGP) most common Intra-AS routing protocols: RIP: Routing Information Protocol OSPF: Open Shortest Path First

RIP ( R OUTING I NFORMATION P ROTOCOL ) Deployed in lover-tier ISPs & enterprise networks Hop is the number of subnets traversed from source to destination Maximum 15 hops Response message (advertisment) every 30’s second UDP & port 520 D C BA u v w x y z destination hops u 1 v 2 w 2 x 3 y 3 z 2 From router A to subnets:

4-5 RIP: E XAMPLE Destination Network Next Router Num. of hops to dest. wA2 yB2 zB7 x--1 ….…..... w xy z A C D B Routing/Forwarding table in D

OSPF (O PEN S HORTEST P ATH F IRST ) Deployed in upper-tier ISPs “open” - publicly available Djikstra’s shortest-path algorithm Broadcasts routing information, carried by IP Divides routers in hierarchical areas.

H IERARCHICAL OSPF

A DVANCES EMBODIED IN OSPF Robustness Secure Multiple same-cost path Integrated support for unicast and multicast routing (MOSPF) Support for hierarchy within a single routing domain

I NTERNET INTER -AS ROUTING : BGP BGP (Border Gateway Protocol) The protocol that glue internet together BGP provides each AS a means to: 1. Obtain subnet reachability information from neighboring ASs. 2. Propagate reachability information to all AS- internal routers. 3. Determine “good” routes to subnets based on reachability information and policy. 4. Allow each subnet to advertise its existence to the rest of the internet, “I am here”

Uses semi permanent TCP, port 179 BGP peers, two routers that’s connected BGP session BGP defines ASs through ASN 3b 1d 3a 1c 2a AS3 AS1 AS2 1a 2c 2b 1b 3c eBGP session iBGP session

I MPORTANT ATTRIBUTES AS-PATH – cotains the ASs through which the adsvertisement for the prefix has passed NEXT-HOP – begins the AS-PATH also provides the critical link between inter- and intra-AS routing protocols Import policy – Decides whether the router should accept of filter the route.

BGP ROUTE SELECTION Router may learn about more than 1 route to some prefix. Router must select route. Elimination rules: 1. local preference value attribute: policy decision 2. shortest AS-PATH 3. closest NEXT-HOP router: hot potato routing 4. additional criteria

Network Layer 4-13 BGP ROUTING POLICY r A,B,C are provider networks r X,W,Y are customer (of provider networks) r X is dual-homed: attached to two networks m X does not want to route from B via X to C m.. so X will not advertise to B a route to C A B C W X Y legend : customer network: provider network