Chapter 8 An Introduction to Optical Atomic Spectroscopy

Slides:



Advertisements
Similar presentations
Optical Atomic Spectroscopy
Advertisements

Lecture 6 ATOMIC SPECTROSCOPY
Raman Spectroscopy A) Introduction IR Raman
Atomic Absorption & Emission Spectroscopy
1.1 Atomic Absorption Spectrometry (AAS) determination of elements not compounds needs radiation source high temperature for atomization Atomization a.
Atomic Absoption Spectroscopy. Electron excitation –The excitation can occur at different degrees low E tends to excite the outmost e - ’s first when.
FLAME SPECTROSCOPY The concentration of an element in a solution is determined by measuring the absorption, emission or fluorescence of electromagnetic.
427 PHC. Direct-Current Plasma  A direct-current plasma (DCP) is created by an electrical discharge between two electrodes. A plasma support gas is necessary,
1 Atomic Absorption Spectroscopy Atomic Emission Spectroscopy Lecture 18.
Chapter 10 ATOMIC EMISSION SPECTROMETRY
AAS and FES (Ch 10, 7th e, WMDS)
Atomic Emission Spectroscopy
Atomic Absorption Spectroscopy Prof Dr Hisham E Abdellatef 2011.
Metal Analysis by Flame and Plasma Atomic Spectroscopy Flame A. Atomization 1. Types of Atomization Processes a.) Nebulizers b. Electrothermal atomization.
Part 2.
AA and Atomic Fluorescence Spectroscopy Chapter 9
Atomic Spectroscopy Atomic Spectroscopic Methods Covered in Ch 313: Optical Atomic Spectrometry (Ch 8-10) Atomic X-ray Spectrometry (Ch 12) Atomic Mass.
INTRODUCTION TO OPTICAL METHODS
Atomic Absorption Spectrometry Dr AKM Shafiqul Islam University Malaysia Perlis.
Flame photometry.
Molecular Fluorescence Spectroscopy
Atomic Emission Spectroscopy
427 PHC.  Atomic emission spectroscopy (AES) is based upon emission of electromagnetic radiation by atoms.
Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh
announcements and reminders
Atomic Emission - AES M* → M + hn Thermal excitation M → M*
Atomic spectra are a result of energy level diagrams - quantum theory.
Atomic Absorption Spectroscopy (AAS)
Absorption and emission processes
OPTICAL ATOMIC SPECTROMETRY Chap 8 Three major types Optical spectrometry Optical spectrometry Mass spectrometry Mass spectrometry (X-ray spectrometry)
Instrumental Chemistry
BC ILN Atomic Absorption Spectroscopy (AAS) 1 Thompson Rivers University.
Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh
Common types of spectroscopy
Atomic Emission Spectroscopy
Atomic Emission Spectrometry
1.1 Inductively coupled plasma (ICP) Three Argon flow 1.Plasma gas (10-20 L/min) 2.Nebulizer gas (~1L/min) 3.Optional auxiliary gas (~0.5L/min) Radio-frequency.
B.SC.II PAPER-B (OPTICS and LASERS)
1 Atomic Emission Spectroscopy Lecture Advantages of Plasma Sources 1.No oxide formation as a result of two factors including Very high temperature.
1 Atomic Absorption Spectroscopy Lecture Performance Characteristics of Electrothermal Atomizers Electrothermal atomization is the technique of.
ANALYTICAL CHEMISTRY CHEM 3811 CHAPTER 20
to Optical Atomic Spectroscopy
Atomic spectroscopy Elemental composition Atoms have a number of excited energy levels accessible by visible-UV optical methods ä Must have atoms (break.
1 Introduction to Atomic Spectroscopy Atomic Absorption Spectroscopy Lecture 12.
Adv. Inst. Techs.  flame emission (eg flame photometer) known as low temperature emission ( K) ◦ first form of spectroscopy ◦ used in commercial.
Beers Law for a Single Component Sample I0I0 A = Absorbance = - log 10 I I / I 0 b = Optical path length c = Solution Concentration (M/L) ε = Molar Absorptivity.
Lecture 2 INTRODUCTION TO SPECTROMETRIC METHODS Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 6 An Introduction to Spectrometric Methods Spectrometric methods are a large group of analytical methods that are based on atomic and molecular.
Chapter 8 An Introduction to Optical Atomic Spectrometry 1
Atomic Fluorescence Spectroscopy. Background l First significant research by Wineforder and Vickers in 1964 as an analytical technique l Used for element.
1 Introduction to Atomic Spectroscopy Lecture 10.
Atomic-absorption spectroscopy
1 Atomic Emission Spectroscopy Molecular Absorption Spectroscopy Lecture 21.
1 Introduction to Atomic Spectroscopy Lecture 10.
Introduction to Optical Atomic spectrometry
A TOMIC - ABSORPTION SPECTROSCOPY Lab no. 3 Done by : Iman Al Ajeyan.
1 Introduction to Atomic Spectroscopy Lecture 10.
1 Chapter 8 Atomic Absorption Spectroscopy ( AAS ) Yang Yi College of Science, BUCT.
Chapter 28 Atomic Spectroscopy.
Flame Emission Spectrometry
Chem. 133 – 3/30 Lecture.
The ratio of excited state to ground state atoms as a function of temperature is determined by the Maxwell-Boltzmann expression. Fig Excited state.
Introduction to Atomic Spectroscopy
Elemental composition
Chapter 8 An Introduction to Optical Atomic Spectroscopy
Atomic Absorption Spectroscopy
Introduction to Atomic Spectroscopy
Photon Physics ‘08/’09 Thijs Besseling
Introduction to Atomic Spectroscopy
FLAME SPECTROSCOPY The concentration of an element in a solution is determined by measuring the absorption, emission or fluorescence of electromagnetic.
Presentation transcript:

Chapter 8 An Introduction to Optical Atomic Spectroscopy Atomic Spectroscopic methods are used for elemental analysis for identification and quantitation. Need free atoms in the gas phase for atomic analysis. The elements present in the sample are converted to gaseous atoms or elementary ions by a process called atomization. The ultraviolet/visible absorption, emission or fluorescence of the atomic species in the vapor is measured.

Atomic spectroscopy are of 3 types – atomic absorption (AA), atomic emission (AE) and atomic fluorescence (AF) methods 1. Atomic Absorption(AA): In a hot gaseous medium, atoms are capable of absorbing radiation of wavelengths characteristic of electronic transitions from ground to higher excited states. Typically atomic absorption spectrum consists of resonance lines which are the result of transitions from the ground to upper levels.

2. Atomic Emission (AE): At room temperature, essentially all of the atoms of a sample of matter are in the ground state. Excitation to higher orbitals can be brought about by the heat of a flame, a plasma, an electric arc or spark. Its return to the ground state is accompanied by emission of a photon of radiation.

3. Atomic Fluorescence (AF): Atoms or ions in a flame can be made to fluoresce by irradiation with an intense source containing wavelengths that are absorbed by the element. The observed radiation is most commonly the result of resonance fluorescence involving transitions from excited states returning to the ground state.

Atomic Line Widths The widths of atomic lines are of considerable importance in atomic spectroscopy. Narrow lines are highly desirable for both absorption and emission because they reduce the possibility of interference due to overlapping spectra. The line width ½ of an atomic absorption or emission line is defined as its width in wavelength units when measured at one half the maximum signal.

Line broadening arises from four sources: The uncertainty effect (because of uncertainties in the transition times) The Doppler effect (because of rapid movement of atoms) Pressure effect due to collision between atoms of the same kind and with foreign atoms Electric and magnetic field effects

The Effect of Temperature Temperature exerts a profound effect upon the ratio between the number of excited and unexcited atomic particles in an atomizer which can be derived from the Boltzmann equation, i.e. where, Nj = number of atoms in an excited state No = number of atoms ground state k = Boltzmann constant (1.38 x 10-23J/K) T = temperature in Kelvin Ej = energy difference in joules between Nj and No Pj and Po = statistical factors depend on quantum level

Atomization Methods In order to obtain atomic spectra, the constituents of a sample must be converted to gaseous atoms which can then be determined by emission, absorption, or fluorescence measurements. The process by which the sample is converted into an atomic vapor is called atomization. The precision and accuracy of atomic methods are dependent upon the atomization step.

Sample Introduction Methods Sample introduction limits the accuracy, the precision, and the detection limits of atomic spectroscopic measurements. The goal of sample introduction is to transfer a reproducible and representative portion of a sample into the atomizer with high efficiency and with no adverse interference effects. Samples are most commonly introduced in the form of solutions. Samples are introduced in the form of solids or finely dispersed powder if it is difficult to dissolve.

…Sample Introduction Methods continued… 1. Pneumatic Nebulizers: Samples are dissolved in an aqueous medium and then introduced into the atomizer by means of a nebulizer that converts the liquid into a fine mist or aerosol.

…Pneumatic Nebulizers continued… (a) Concentric tube pneumatic nebulizer in which liquid sample is sucked through a capillary tube by a high pressure stream of gas flowing around the tip of the tube. This process of liquid transport is called aspiration. The high velocity gas breaks the liquid up into fine droplets of various sizes which then carried into the atomizer. (b) Cross flow nebulizer in which the high pressure gas flows across a capillary tip at right angles. Liquid is pumped through the capillary.

…Pneumatic Nebulizers continued… (c) Fritted disk nebulizer in which the sample solution is pumped onto a fritted surface through which a carrier gas flows. It produces a much finer aerosol than do the first two. (d) Babington nebulizer which consists of hollow sphere in which high pressure gas is pumped through a small orifice in the sphere surface. Liquid flowing in a thin film over the sphere surface is nebulized by the expanding jet of gas.

2. Ultrasonic Nebulizers: The sample is pumped onto the surface of a piezoelectric crystal that vibrates at a frequency of 20 kHz to several MHz. Such nebulizer produce more homogeneous aerosols than pneumatic nebulizers do. 3. Electrothermal Vaporizers: It is an evaporator located in a closed chamber through which an inert gas such as argon flows to carry the vaporized sample into the atomizer. A small liquid or solid sample is placed on a conductor, such as a carbon rod or tantalum filament. An electric current then evaporates the sample rapidly and completely into the argon gas.

…Sample Introduction Methods continued… 4. Hydride Generation Techniques: It provides a method for introducing samples containing arsenic, antimony, tin, selenium, bismuth, and lead into an atomizer as a gas. Volatile hydrides can be generated by addition of an acidified aqueous solution of a sample to a small volume of a 1% aqueous solution of sodium borohydride: 3BH4- + 3H+ + 4H3AsO3  3H3BO3 + 4AsH3 + 3H2O The volatile hydride – in this case, arsine – is swept into the atomization chamber by an inert gas.

…Sample Introduction Methods continued… Introduction of Solid Samples: The introduction of solids in the form of powders, metals, or particulates into plasma and flame atomizers has the considerable advantage of avoiding the often tedious and time-consuming step of sample decomposition and dissolution.

These techniques take a variety of forms: …Introduction of Solid Samples continued… These techniques take a variety of forms: Direct manual insertion of the solid into the atomization device. Electrothermal vaporization of the sample and transfer of the vapor into the atomization region. Arc/spark or laser ablation of the solid to produce a vapor that is then swept into the atomizer. Slurry nebulization in which the finely divided solid sample is carried into the atomizer as an aerosol consisting of a suspension of the solid in a liquid medium. Sputtering in a glow discharge device.