FACULTY OF AGRICULTURE & ENVIRONMENT Improving water use efficiency of wheat: A case study from Australia Dr. Babar Manzoor Atta Senior Scientist, NIAB, Faisalabad International Seminar on Climate Change Adaptation Strategies to Ensure Food Security University of Agriculture, Faisalabad January 16-17, 2014
The significance of this work Drought WUE wheat varieties 2
Materials and methods COMPONENT 1: FIELD STUDIES Location: Plant Breeding Institute (PBI), Narrabri, NSW. Plant material:2009 = = = 20 Soil moisture treatments: i.High moisture ii.Low moisture/rainfed No irrigation applied in 2010 (wet season) Experimental Design: Alpha-lattice designs with three replications Procedure: Aluminum neutron probe access tubes fixed after sowing Moisture was assessed fortnightly with NMM 3
Parameters Water use › Soil water content › Water use (at anthesis; maturity) › WUE (DM Anthesis, DM maturity, grain) Whole plant parameters › Days to heading › Days to maturity › Plant height › Biomass at anthesis › Biomass at maturity › Number of tillers › Grain yield per m 2 › Harvest Index › Grain yield › Drought Susceptibility Index (DSI) › Normalized difference vegetation index (NDVI) › Canopy cover (Digital imaging) › Chlorophyll content ›Canopy temperature depression (CTD) › Carbon isotope discrimination (∆) Flag leaf traits › Leaf area › Leaf length › Leaf width › Leaf weight › Specific leaf weight › Specific leaf area Spike parameters › Awn length › Spike length › Spikelet density › Number of spikelets per spike › Number of grains per spike › Single spike weight › Grain weight per spike Materials and methods 4
› Number of kernels per spikelet › 1000 grain weight Root traits › Root length (0-15 cm) › Root length (15-30 cm) › Root length (30-60cm) › Total root length (0-60 cm) › Root average diameter (0-15 cm) › Root average diameter (15-30 cm) › Root average diameter (30-60 cm) › Total root average diameter (0-60 cm) › Root length density (0-15 cm) › Root length density (15-30 cm) › Root length density (30-60 cm) › Root length density (0-60 cm) Statistical analysis › GenStat 14 th edition Materials and methods The Fischer and Maurer (1978) drought susceptibility index (DSI) of each genotype for the stress treatment was calculated as: DSI = (1-Ys/Yi)/(1-Xs/Xi) Where Ys = yield under stress treatment; Yi = yield without stress; Xs and Xi = average yield over all genotypes under stress and non-stress treatments, respectively. 5
COMPONENT 2: GENOME-WIDE ASSOCIATION ANALYSIS › Yield › Stripe rust › Leaf rust › Crown rot Software: › R version (R Core Team 2012) Materials and methods 6
Sr. No. Genotype Year of release 1MILAN/KAUZ/5/CNDO/R143//ENTE/MEXI_2/3/AEGILOPS SQUARROSA (TAUS)/4/ - 2CROC_1/AE.SQUARROSA (224)//OPATA/3/PASTOR - 3CROC_1/AE.SQUARROSA (224)//2*OPATA/3/2*RAC CETA/AE.SQUARROSA (327)//2*JANZ - 5QT6581/4/PASTOR//SITE/MO/3/CHEN/AEGILOPS SQUARROSA (TAUS)//BCN - 6D67.2/P66.270//AE.SQUARROSA (320)/3/CUNNINGHAM - 7Janz Giles Cunningham Sokoll - 11Crusader LPB LPB (Scout) LPB (Envoy) LPB (Spitfire) Lang Sunco Carinya Sunvale Ventura
8
Comparison of rainfall during
DateDASSource of variation/d.fGrowth stage GenotypeDepthGenotype.Depth ns *** ns * *** ns ** *** ns Booting/heading ** *** ns Anthesis *** *** ns Milk **0.3298*** ns Milk *** *** ns Dough *** *** ns Dough ** *** ns Ripening *** *** ns Maturity ANOVA for genotype and depth for ten dates in high moisture environment during 2009 Results 10
SOVdf Water use Anthesis (mm) Water use Maturity (mm) WUE DM Maturity kg ha -1 mm -1 WUE Grain kg ha -1 mm -1 Genotype ns 291.4*8.351*6.807** LSD (P<0.05) bcd31.55 cde13.82 de a32.72 bcde14.4 cd ab32.33 bcde15.89 abcd cd35.03 ab16.57 abc abc32.62 bcde14.5 bcd abcd36.07 a18.04 a abc32.01 bcde16.35 abc abc34.06 abc16.81 ab cd30.04 e13.85 de abcd31.36 cde14.54 bcd d33.77 abcd16.27 abc cd31.78 bcde14.59 bcd abcd33.61 abcd15.75 abcd ab30.57 de12.05 e cd34.2 abc14.61 bcd Mean square and means for WU and WUE in high moisture environment during
Relationship of WUE DM and WUE Grain with grain yield in high moisture environment during
Relationship of WUE DM with WUE Grain (High moisture environment, 2009) 13
Relationship of WUE Grain with grain yield (Low moisture environment, 2009) Rainfed trial 14
SOVdf Water use Anthesis (mm) WUE DM- Anthesis (kg ha -1 mm -1 ) Water use Maturity (mm) WUE DM -Maturity (kg ha -1 mm -1 ) WUE Grain (kg ha -1 mm -1 ) Genotype ***15.98**135.22***6.18**2.47*** LSD (P<0.05) h26.83 ab419.6 fghi24.4 ef9.8 efgh abcd31.4 a420.9 fgh29.03 a11.59 abc ab23.62 bcde438.1 ab26.23 abcdef8.73 hi g25.83 bc419.1 ghij28.29 ab11.61 abc a27.79 ab413.4 j28.69 a12.15 a abcd24.56 bcde423.4 efg27.19 abcde11.78 ab abcd23.76 bcde434.1 bc27.99 abc9.59 fgh a24.23 bcde437.4 ab26.19 abcdef10.62 bcdef fg20.7 de430.8 cd24.63 def9.91 efgh abcd27.34 ab417.3 hij28.17 abc11.2 abcd defg25.38 bcd423.5 efg25.72 bcdef10.97 abcde cdefg25.3 bcd430.3 cd23.94 f10.73 bcdef efg27.73 ab414.1 ij28.33 ab10.41 cdef fg27.69 ab420.7 fgh27.23 abcde10.04 defg bcde24.45 bcde425.2 def25.38 bcdef9.04 ghi cdef23.44 bcde441.2 a25.21 cdef9.63 fgh cdef21.23 cde423.9 efg24.08 f10.6 bcdef efg21.97 cde428.6 cde27.58 abcd10.91 abcde cdefg20 e437 ab23.52 f7.96 i abc27.21 ab423.7 efg27.42 abcd9.03 ghi Mean square and means for WU and WUE in environment 1,
Relationship of WUE Grain with grain yield during 2010 Environment 1 Environment 2 16
Source of variationd.f.BootingAnthesisMilkDoughMaturity Environment *** *** *** *** *** Residual Genotype ns ** *** **0.0028** Environment.Genotype ns *** *** ** * Residual Depth *** *** *** *** *** Environment.Depth *** *** *** *** *** Genotype.Depth ns * * * ** Environment.Genotype.Depth * *** ** ** *** Residual Total719 cv (%) Combined analysis of soil moisture for individual growth stage of 15 genotypes,
Genotype Stress grain yield Non-stress grain yield Mean % Reduction DSI Mean Genotype mean performance under high and low moisture environments and their drought susceptibility index (DSI),
Relationship between biomass and grain yield,
Relationship between NDVI and grain yield,
Relationship between canopy temperature depression and grain yield,
Explanatory variablesWUE DM -MaturityWUE Grain Yield 1.NDVI 2.LLLW 3.CTD 4.BIA BIM 5.BIM HI 6.PH TGW 7.HI WUE DM -Maturity 8.NKPS WUE Grain 9.TGW 10.GRY 11.WUE Grain WUE DM -Maturity 12.SL Percent Variance98 Multiple regression analysis using grain yield, WUE DM -Maturity, and WUE Grain as the response (dependent) variables. Results 22
Results Genome-wide Association analysis in a commercial wheat breeding program 23
S. No.Trial locationsState Number of genotypes NarrabriNSW WalgettNSW BiniguyNSW North StarNSW ParkesNSW HorshamVIC Wee WaaNSW QuirindiNSW QueenslandQLD PremerNSW Walgett (crown rot)NSW McAlisterNSW YoungNSW Wagga NSW MeandarraQLD--81 Number of genotypes in AGT wheat yield trials ( ) and used for association analysis 24
Association analysis of yield trait in multi-environments from Nar08, Narrabri 2008; Wal08, Walgett 2008; Bin08, Biniguy 2008; NSto8, North Star 2008; Par08, Parkes 2008; Hor08, Horsham (Victoria) 2008 Nar09, Narrabri 2009; Wal09, Walgett 2009; Bin09, Biniguy 2009; NSt09, North Star 2009; Wee09, Wee Waa 2009; Qui09, Quirindi 2009; Hor09, Horsham 2009; Qld09, Queensland 2009 Nar10, Narrabri 2010; Wal10, Walgett 2010; Bin10, Biniguy 2010; NSt10, North Star 2010; Wee10, Wee Waa 2010; Qui10, Quirindi 2010; Pre10, Premer 2010; Walcr10, Walgett Crown rot 2010; Mca10, McAlister 2010; You10, Young 2010; Wag10, Wagga Wagga 2010; Hor10, Horsham 2010; Mea10, Meandarra Year: | | | | Genotype: > −log 10 (P) 25
Association analysis of stripe rust in multi-environments ( ) S1_09, Narrabri, Score 1; S2_09, Narrabri, Score 2; S3_09, Narrabri, Block I3 (Trial); S4_09, Cobbitty, Score 1; S5_09, Cobbitty, Score 2; S6_09, Roseworthy (SA) S1_10, Narrabri, Block I6 (Trial); S2_10, Narrabri, Block I4, replication 1; S3_10, Narrabri, Block I4, replication 2; S4_10, Narrabri, TOS Block; S5_10, Narrabri, Hydrant 10; S6_10, Cobbitty, Score 1. Year: | | | Genotype:
Association analysis of leaf rust and crown rot, Leaf rust: L1_09, Cobbitty score 1; L2_09, Cobbitty score 2; L1_10, Cobbitty score 1; L2_10, Cobbitty score 2; Crown rot: C1_09, Narrabri, Nursery, Score 1; C2_09, Walgett, Crown rot trial score; C3_09, Walgett, Crown rot trial maturity score; C1_10, Narrabri, Nursery, Score 1; C2_10, Narrabri, Nursery, Score 2. Year: | | | | | Genotype:
ChromosomeSignificant DArT markers 1A4 1B1 1D4 2A10 5A2 5B6 6A19 6D4 7A22 7D22 New marker trait associations identified for grain yield 28
Chromosome Significant DArT markers 1D2 3A2 3B13 3D20 4B6 New marker trait associations for stripe rust resistance 29
Chromosome Significant DArT markers 3A1 3B4 5A1 New marker trait associations for leaf rust resistance 30
Chromosome Significant DArT markers 1B8 2B4 2D30 3A7 3D9 4A8 5B18 6A9 6B10 6D4 7A6 7B15 7D10 New marker trait associations for crown rot resistance 31
Future work PBI No.GenotypePositive markers 1Crusader49 10Stampede43 11Sunstate40 45SUN344 E/VPMB SUNCO/2*PASTOR//SUN436E47 94SUN434A/SUN436E EGA Bonnie Rock/SUN436F41 99B409C/SUN420A//SUN498E43 100CHARA/B409C//SUN498E47 101RAC892/98ZHB03//RAC Chara/4*Sun376G46 151RAC1192/Ventura50 196DM5637*B8/H45//SUN498D42 208Ellison/Ventura48 236SUN500B/Carinya41 255Sunstate/Ellison47 273WA /2*SUN426B52 283Yr15,24,2*399C SUN445C/QT *M5880/SUN366A44 Pyramiding the genomic regions A x B C x D E x F G x H F 1 x F 1 I x J x DH 32
Synthetic lines WUE wheat ideotype: Roots traits o A more efficient root system Agro-physiological traits o Increased early ground cover (NDVI) o Early flowering o High biomass, harvest index, CTD o Greater spike traits (No. of kernels per spikelet, 1000 grain weight) o Higher grain yield The MTAs identified for the key traits responsible for improved productivity and adaptation could be used to pyramid favorable alleles into modern cultivars. Conclusion 33
34