Oscillations © 2014 Pearson Education, Inc. Periodic Motion Periodic motion is that motion in which a body moves back and forth over a fixed path, returning.

Slides:



Advertisements
Similar presentations
Chapter 14 - Simple Harmonic Motion
Advertisements

Kinematics of simple harmonic motion (SHM)
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Simple Harmonic Motion
Simple Harmonic Motion
Simple Harmonic Motion
Simple Harmonic Motion
Simple Harmonic Motion Lecturer: Professor Stephen T. Thornton
Physics 111: Mechanics Lecture 14 Dale Gary NJIT Physics Department.
Chapter 14 Oscillations Chapter Opener. Caption: An object attached to a coil spring can exhibit oscillatory motion. Many kinds of oscillatory motion are.
Copyright © 2009 Pearson Education, Inc. Lecture 1 – Waves & Sound a) Simple Harmonic Motion (SHM)
Oscillation.
Chapter 15 Oscillatory Motion.
Oscillations Phys101 Lectures 28, 29 Key points:
Chapter 11 Vibrations and Waves Simple Harmonic Motion If an object vibrates or oscillates back and forth over the same path, each cycle taking.
A laser beam is shown into a piece of glass at an angle of 35º relative to the surface. What is the angle of refraction? After it enters the glass it leave.
NAZARIN B. NORDIN What you will learn: Load transfer, linear retardation/ acceleration Radius of gyration Moment of inertia Simple.
Harmonic Motion and Waves Chapter 14. Hooke’s Law If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount.
Simple Harmonic Motion
Vibrations and Waves AP Physics Lecture Notes m Vibrations and Waves.
SIMPLE HARMOIC MOTION CCHS Physics.
Chapter 11 - Simple Harmonic Motion
Vibrations and Waves Hooke’s Law Elastic Potential Energy Comparing SHM with Uniform Circular Motion Position, Velocity and Acceleration.
Photo by Mark Tippens A TRAMPOLINE exerts a restoring force on the jumper that is directly proportional to the average force required to displace the.
Vibrations and Waves m Physics 2053 Lecture Notes Vibrations and Waves.
Chapter 12 Simple Harmonic Motion Photo by Mark Tippens A TRAMPOLINE exerts a restoring force on the jumper that is directly proportional to the average.
Simple Harmonic Motion
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Copyright © 2009 Pearson Education, Inc. Chapter 14 Oscillations.
Chapter 11 Vibrations and Waves. Units of Chapter 11 Simple Harmonic Motion Energy in the Simple Harmonic Oscillator The Period and Sinusoidal Nature.
Copyright © 2009 Pearson Education, Inc. Oscillations of a Spring Simple Harmonic Motion Energy in the Simple Harmonic Oscillator The Simple Pendulum Lecture.
Introduction to Simple Harmonic Motion Unit 12, Presentation 1.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 15: Oscillations
Periodic Motion 1 Chapter 15 Oscillatory Motion April 17 th, 2006.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
© 2014 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Periodic Motion What is periodic motion?
Simple Harmonic Motion
©JParkinson ALL INVOLVE SIMPLE HARMONIC MOTION.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 11 Vibrations and Waves.
SIMPLE HARMONIC MOTION. STARTER MAKE A LIST OF OBJECTS THAT EXPERIENCE VIBRATIONS:
Periodic Motions.
Vibrations and Waves Chapter 11. Most object oscillate (vibrate) because solids are elastic and they will vibrate when given an impulse Tuning forks,
Simple Harmonic Motion
Oscillations. Periodic Motion Periodic motion is motion of an object that regularly returns to a given position after a fixed time interval A special.
Oscillations. Definitions Frequency If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time,
Introductory Video: Simple Harmonic Motion Simple Harmonic Motion.
Whenever the force acting on an object is: Whenever the force acting on an object is: 1. Proportional to the displacement 2. In the opposite direction,
Simple Harmonic Motion Periodic Motion Simple periodic motion is that motion in which a body moves back and forth over a fixed path, returning to each.
Chapter 16 Vibrations Motion. Vibrations/Oscillations Object at the end of a spring Object at the end of a spring Tuning fork Tuning fork Pendulum Pendulum.
Chapter 14 Springs A TRAMPOLINE exerts a restoring force on the jumper that is directly proportional to the average force required to displace the mat.
PHY 151: Lecture Motion of an Object attached to a Spring 12.2 Particle in Simple Harmonic Motion 12.3 Energy of the Simple Harmonic Oscillator.
Simple Harmonic Motion Wenny Maulina Simple harmonic motion  Simple harmonic motion (SHM) Solution: What is SHM? A simple harmonic motion is the motion.
Simple Harmonic Motion Waves 14.2 Simple Harmonic motion (SHM ) 14-3 Energy in the Simple Harmonic Oscillator 14-5 The Simple Pendulum 14-6 The Physical.
Chapter 14 Periodic Motion © 2016 Pearson Education Inc.
Oscillations © 2014 Pearson Education, Inc..
Simple Harmonic Motion
Simple Harmonic Motion
Harmonic Motion AP Physics C.
AP Physics Lecture Notes
Oscillations An Introduction.
Unit 4: Oscillatory Motion and Mechanical Waves
Oscillations © 2014 Pearson Education, Inc..
BTE 1013 ENGINEERING SCIENCES
Chapter 15: Oscillations
Oscillatory Motion Periodic motion Spring-mass system
PENDULUM ©JParkinson.
Simple Harmonic Motion and Wave Interactions
Presentation transcript:

Oscillations © 2014 Pearson Education, Inc.

Periodic Motion Periodic motion is that motion in which a body moves back and forth over a fixed path, returning to each position and velocity after a definite interval of time. Amplitude A Period (seconds,s) Period, T, is the time for one complete oscillation. (seconds,s) Frequency Hertz (s -1 ) Frequency, f, is the number of complete oscillations per second. Hertz (s -1 )

Simple Harmonic Motion, SHM Simple harmonic motion is periodic motion in the absence of friction and produced by a restoring force that is directly proportional to the displacement and oppositely directed. A restoring force, F, acts in the direction opposite the displacement of the oscillating body. F = -kx A restoring force, F, acts in the direction opposite the displacement of the oscillating body. F = -kx xF

We assume that the surface is frictionless. There is a point where the spring is neither stretched nor compressed; this is the equilibrium position. We measure displacement from that point (x = 0 on the previous figure). Simple Harmonic Motion—Spring Oscillations

The minus sign on the force indicates that it is a restoring force—it is directed to restore the mass to its equilibrium position. k is the spring constant The force is not constant, so the acceleration is not constant either

Simple Harmonic Motion—Spring Oscillations summary Displacement is measured from the equilibrium point Amplitude is the maximum displacement, A A cycle is a full to-and-fro motion; this figure shows half a cycle Period is the time required to complete one cycle, T Frequency is the number of cycles completed per second, f

Simple Harmonic Motion—Spring Oscillations If the spring is hung vertically, the only change is in the equilibrium position, which is at the point where the spring force equals the gravitational force.

Simple Harmonic Motion—Spring Oscillations Any vibrating system where the restoring force is proportional to the negative of the displacement is in simple harmonic motion (SHM), and is often called a simple harmonic oscillator.

Displacement in SHM m x = 0x = +Ax = -A x Displacement is positive when the position is to the right of the equilibrium position (x = 0) and negative when located to the left. The maximum displacement is called the amplitude A.

Velocity in SHM m x = 0 x = +A x = -A v (+) Velocity is positive when moving to the right and negative when moving to the left.Velocity is positive when moving to the right and negative when moving to the left. It is zero at the end points and a maximum at the midpoint in either direction (+ or -).It is zero at the end points and a maximum at the midpoint in either direction (+ or -). v (-)

Acceleration in SHM m x = 0x = +Ax = -A Acceleration is in the direction of the restoring force. (a is positive when x is negative, and negative when x is positive.)Acceleration is in the direction of the restoring force. (a is positive when x is negative, and negative when x is positive.) Acceleration is a maximum at the end points and it is zero at the center of oscillation. +x -a -x +a

Acceleration vs. Displacement m x = 0x = +Ax = -A x v a Given the spring constant, the displacement, and the mass, the acceleration can be found from: or Note: Acceleration is always opposite to displacement.

Energy in Simple Harmonic Motion We already know that the potential energy of a spring is given by: PE = ½ kx 2 The total mechanical energy is then: The total mechanical energy will be conserved, as we are assuming the system is frictionless.

Energy in Simple Harmonic Motion If the mass is at the limits of its motion, the energy is all potential. If the mass is at the equilibrium point, the energy is all kinetic. We know what the potential energy is at the turning points: (11-4a)

The total energy is, therefore ½ kA 2 And we can write: This can be solved for the velocity as a function of position: where Energy in Simple Harmonic Motion

The Period and Sinusoidal Nature of SHM Therefore, we can use the period and frequency of a particle moving in a circle to find the period and frequency:

11-3 The Period and Sinusoidal Nature of SHM We can similarly find the position as a function of time: © 2014 Pearson Education, Inc.

The Period and Sinusoidal Nature of SHM The top curve is a graph of the previous equation. The bottom curve is the same, but shifted ¼ period so that it is a sine function rather than a cosine.

The Period and Sinusoidal Nature of SHM The velocity and acceleration can be calculated as functions of time; the results are below, and are plotted at left.