MEMS Deformable Mirrors in Astronomical AO Thomas Bifano Director, Boston University Photonics Center (BUPC) Chief Technical Officer, Boston Micromachines.

Slides:



Advertisements
Similar presentations
- Slide 1 OPTICON Optical-Infrared Astronomy for Europe EC Infrastructures press day 7 July 2005 EC Infrastructures press day 7 July 2005 Gerry Gilmore.
Advertisements

Adaptive Optics Institute for Astronomy David Kim.
Professor Richard S. MullerMichael A. Helmbrecht MEMS for Adaptive Optics Michael A. Helmbrecht Professor R. S. Muller.
RASC, Victoria, 1/08/06 The Future of Adaptive Optics Instrumentation David Andersen HIA.
Halftoning for High-Contrast Imaging P. Martinez 1 C. Dorrer 2, E. Aller Carpentier 1, M. Kasper 1, A. Boccaletti 3, and K. Dohlen 4 1 European Southern.
The Project Office Perspective Antonin Bouchez 1GMT AO Workshop, Canberra Nov
Deformable Mirrors Lecture 8
Adaptive optics and wavefront correctors.
Adaptive Optics Deformable Mirror Electronics Simulation Pearl Yamaguchi Subaru Telescope National Astronomical Observatory of Japan Mentor: Stephen Colley.
Adaptive Optics for Wavefront Correction of High Average Power Lasers Justin Mansell, Supriyo Sinha, Todd Rutherford, Eric Gustafson, Martin Fejer and.
FIRST A Fibered Imager for Single Telescope Lick 3m first light & Perspectives G. Duchêne, for the FIRST team F. Marchis, G. Perrin, T. Kotani, S. Lacour,
Keck Next Generation Adaptive Optics Team Meeting 6 1 Optical Relay and Field Rotation (WBS , ) Brian Bauman April 26, 2007.
Telescope Design The W.M. Keck (I & II) Telescopes Jana Hunt & Kent Van ME250 Precision Machine Design April 8, 2003.
MEMS Wavelength Add/Drop Switch Joseph Ford, James Walker, Vladimir Aksyuk, David Bishop References:J. Ford, V. Aksyuk, D. Bishop and J. Walker, “Wavelength.
High-Order Deformable Mirror
Don Gavel: Keck NGAO meeting April 25, LAO Activities Relevant To Keck NGAO Donald Gavel NGAO Team Meeting 6 April 26, 2007.
Figuring large off-axis segments to the diffraction limit Hubert Martin Steward Observatory University of Arizona.
Case Studies in MEMS Case study Technology Transduction Packaging
Boston University Photonics Center: Precision Engineering Research Laboratory, Thomas Bifano Micromachined Deformable Mirrors for Adaptive.
Photonics Center NSF REU INM – June 9, 2015 EEC ‐ Boston University Photonics Center National Science Foundation Research Experiences for Undergraduates.
MEMS for NEMS Solutions for the Fat Finger Problem Michael Kraft.
Exoplanet Exploration James Kelly Mitchell Kirshner Adam Morabito Matt Rote.
A Bonnet and Fluid Jet Polishing Facility for Optics related to E-ELT Gabriele Vecchi INAF-Osservatorio Astronomico di Brera The outcome of the T-REX project.
Apodized Filter IWA (λ/D)2~4 OWA (λ/D)13 Contrast ~10 -7 Throughput (%)41.4% Shape of the filter and the simulated coronagraphic point spread function.
Shaping Thin Glass Mirrors using Air Bearings Mark L. Schattenburg, Mireille K. Akilian and Ralf K. Heilmann Space Nanotechnology Laboratory Kavli Institute.
Characterization of MEMS Deformable Mirrors for Wavefront Control in Extreme Adaptive Optics Center for Adaptive Optics University of California, Santa.
Os, 9/16/99 MICROMACHINING AND MICROFABRICATION TECHNOLOGY FOR ADAPTIVE OPTICS Olav Solgaard Acknowledgements: P.M. Hagelin, K. Cornett, K. Li, U. Krishnamoorthy,
MCAO Adaptive Optics Module Mechanical Design Eric James.
A visible-light AO system for the 4.2 m SOAR telescope A. Tokovinin, B. Gregory, H. E. Schwarz, V. Terebizh, S. Thomas.
Optical Design of Giant Telescopes for Space Jim Burge, Erin Sabatke Optical Sciences Center Roger Angel, Neville Woolf Steward Observatory University.
Center for Adaptive Optics 15 Nov 1999 Meeting Major William D. Cowan, Ph.D. Air Force Research Laboratory Materials and Manufacturing Directorate, AFRL/ML.
WIRELESS MICROMACHINED CERAMIC PRESSURE SENSORS
Adaptive Optics Nicholas Devaney GTC project, Instituto de Astrofisica de Canarias 1. Principles 2. Multi-conjugate 3. Performance & challenges.
Figure 17.1: Evolution from MEMS to NEMS to molecular structures. Nanostructures may have a total mass of only a few femtograms. In the nanomechanical.
Characterizing Lenslet Arrays for the Keck Adaptive Optics System Laboratory for Adaptive optics (LAO) UC Santa Cruz Name: Abubakarr Bah Home Institution:
SAO Development of adjustable grazing incidence x-ray optics Paul B. Reid 1, William Davis 1, Daniel A. Schwartz 1, Sang Park 1, Susan Trolier-McKinstry.
1 Characterization of a Bimorph Deformable Mirror in a Closed Loop Adaptive Optics System for Vision Science Purposes Zachary Graham 1 Sophie Laut 2, David.
Characterization and Upgrading of Adaptive Optics Demonstrator Joseph Curamen Maui Community College Mark Hoffman & Mark Ammons MCC & UCSC-CfAO.
1 Characterization of the T/T conditions at Gemini Using AO data Jean-Pierre Véran Lisa Poyneer AO4ELT Conference - Paris June , 2009.
MVE MURI 99 Kick-off Meeting R. Barker, Technical Monitor Started 1 May 99 October 1999 Project Introduction and Motivation Millimeter-wave switches may.
1 Confidential Proprietary Application of layers with internal stress for silicon wafer shaping J. Šik 1, R. Lenhard 1, D. Lysáček 1, M. Lorenc 1, V. Maršíková.
1 High-order coronagraphic phase diversity: demonstration of COFFEE on SPHERE. B.Paul 1,2, J-F Sauvage 1, L. Mugnier 1, K. Dohlen 2, D. Mouillet 3, T.
4/20/2004s.e.mathews1 Steward Observatory Technical Division Mechanical Engineering Seminar Series Seminar #1 April 20, 2004.
Lawrence Livermore CfAO Video Conference - March 29, 2001 Emily Carr Department of Electrical and Computer Engineering University of California, Davis.
JY/11/15/99 MTC Optically flat arrays of micromirrors June Yu James A. Folta William Cowan (AFRL) to improve the mirror surface quality and optical fill-factor.
The Adaptive Mirror for the E-ELT
Na Laser Guide Stars for CELT CfAO Workshop on Laser Guide Stars 99/12/07 Rich Dekany.
Design and Development of the FSM (Fast steering Secondary Mirror)
Pre-focal wave front correction and field stabilization for the E-ELT
Wide field telescope using spherical mirrors Jim Burge and Roger Angel University of Arizona Tucson, AZ Jim
The Self-Coherent Camera: a focal plane wavefront sensor for EPICS
Lightweight mirror technology using a thin facesheet with active rigid support J. H. Burge, J. R. P. Angel, B. Cuerden, H. Martin, S. Miller University.
Charts for TPF-C workshop SNR for Nulling Coronagraph and Post Coron WFS M. Shao 9/28/06.
High-Performance MEMS-Based Deformable Mirrors for Adaptive Optics Iris AO, Inc.
Page 1 Lecture 16 Extreme Adaptive Optics: Exoplanets and Protoplanetary Disks Claire Max AY 289 March 7, 2016 Based in part on slides from Bruce Macintosh.
The ASTRI prototype: a pathfinder Dual-Mirror telescope for the CTA-SST array Rodolfo Canestrari for the ASTRI collaboration INAF-Astronomical Observatory.
1 Cascina – October 19, 2011 ASPERA Forum Laurent Pinard Substrates, Polishing, Coatings and Metrology for the 2 nd generation of GW detector Laurent PINARD.
University of Rochester, Center for Visual Science The Use of a MEMS Mirror for Adaptive Optics in the Human Eye Nathan Doble 1, Geun-Young Yoon 1, Li.
Smart co-phasing system for segmented mirror telescopes SPIE: Juan F Simar* a, Yvan Stockman a, Jean Surdej b a Centre Spatial de Liège, LIEGE.
ALPAO deformable mirrors
Pyramid sensors for AO and co-phasing
Micromachined Deformable Mirrors for Adaptive Optics
Theme 2 AO for Extremely Large Telescopes
LSST Camera Detector Status
MICROMACHINING AND MICROFABRICATION TECHNOLOGY FOR ADAPTIVE OPTICS
He Sun Advisor: N. Jeremy Kasdin Mechanical and Aerospace Engineering
Modern Observational/Instrumentation Techniques Astronomy 500
Theme 2 AO for Extremely Large Telescopes
Theme 2 AO for Extremely Large Telescopes
Table 3. Surface roughness (inner faces)
Presentation transcript:

MEMS Deformable Mirrors in Astronomical AO Thomas Bifano Director, Boston University Photonics Center (BUPC) Chief Technical Officer, Boston Micromachines Corporation (BMC) Paul Bierden President, BMC Steven Cornelissen, VP, BMC AO4ELT, Paris, 25 June 2009

Microelectromechanical (MEMS) DMs Over the past decade, we’ve led an academic program at the Boston University Photonics Center (BU), and a technology development program at Boston Micromachines Corporation (BMC), to pioneer and demonstrate DMs made with semiconductor foundry processes. Mirror Electrostatic actuator array Attachment post + Silicon wafer

Two DMs described in this talk 4096 actuator continuous membrane DM for Gemini Planet Imager 331 segment (993 actuator) hexagonal tip-tilt-piston DM for NASA TPF-C visible nulling coronagraph

Application: Gemini Planet Imaging (4K DM) B. Macintosh, J. Graham, D. Palmer et al., “Adaptive optics for direct detection of extrasolar planets: the Gemini Planet Imager,” Comptes Rendus Physique, vol. 8, no. 3-4, pp , Apr-May, Gemini Planet Imager: 4096 actuator DM (BMC), with 3.5µm stroke, for Jovian exoplanet detection. Engineering mirror delivered, science mirror due.

Some DM Requirements for 4K GPI DM DescriptionRequirement Actuators4096 (64x64 array) Stroke3µm, after mirror is flattened Active Aperture19.2 mm (48 actuator 400µm pitch) Local nonflatness<10 nmRMS Bandwidth~2.5 kHz Inter-Actuator Stroke>1µm Yield100% of actuators on a 48 actuator aperture Operating Temperature-30C to +25C

4K DM Prototype Results High spatial frequency print-through reduced to <10nm RMS Previous DM: 21.5nm RMS Phase I DM: 5nm RMS 2.6mm 4.32 µm 1.15µm Interactuator stroke achieved 175nm 80nm 0nm 200µm 1000µm 1150nm 0nm >4µm stroke 210V

Measured Optical Quality Top right zone (showing scallop at periphery) Center zone 16RW013#001 ~50nm PV 6µm 0µm 4.06µm PV 707nm RMS 48m ROC Measured surface 200nm 0nm 40nm PV 4nm RMS Filtered surface (uncontrollable) ~25nm PV 50nm 0nm 100nm 0nm

DM Static Cold C

Cycling & Hysteresis

Package and Driver Form factor3U Chassis (5.25” x19” x14”) Frame rate34 kHz / 60 kHz (Low Latency) Resolution14-bit

This MEMS DM architecture permits ultraprecise, repeatable control 1024 actuator MEMS DM Controllable flatness <12nm Actuator repeatability <1nm Hysteresis <1nm 144nm Initial 12nm Controlled Three research groups have developed precise models of MEMS DM behavior, including mechanical coupling through the mirror and nonlinear actuation electromechanics. Result: We can now achieve open-loop shape control within 25nm error in one step. J. B. Stewart, A. Diouf, Y. P. Zhou, T. G. Bifano, Journal of the Optical Society of America 24, 3827 (Dec, 2007). J. W. Evans et al., Optics Express 14, 5558 (2006)

331 Element Tip-Tilt-Piston MEMS DM +/-6mrad tip-tilt 2um piston 600µm

Hex Mirror Segments Use thick, eptiaxial-grown polysilicon layer (6-10µm) to achieve surface figure requirement 5.9 nm ± 0.2nm RMS over DM aperture Actual Segment Thickness: 7.5µm 35nm 0nm

Acknowledgements MEMS DM Students: Y. Zhou, J. Stewart*, J. Perreault, R. K. Mali, Andrew LeGendre BMC Technical Research Staff: A. Hartzell, P. Bierden, S. Cornelissen, J. Stewart, P. Woskov, C. Lam Funding: CfAO, Gemini, NASA, DARPA