MSU neutrino group activity in neutrino telescope projects MSU neutrino group activity in neutrino telescope projects.

Slides:



Advertisements
Similar presentations
Apostolos Tsirigotis KM3NeT Design Study: Detector Architecture, Event Filtering and Reconstruction Algorithms XXV Workshop on recent developments in High.
Advertisements

R.Shanidze, B. Herold, Th. Seitz ECAP, University of Erlangen (for the KM3NeT consortium) 15 October 2009 Athens, Greece Study of data filtering algorithms.
Trigger issues for KM3NeT the large scale underwater neutrino telescope the project objectives design aspects from the KM3NeT TDR trigger issues outlook.
ICECUBE & Limits on neutrino emission from gamma-ray bursts IceCube collaboration Journal Club talk Alex Fry.
Using HOURS to evaluate KM3NeT designs A.Leisos, A. G. Tsirigotis, S.E.Tzamarias In the framework of the KM3NeT Design Study VLVnT Athens, 15 October.
Neutrino astronomy with Antares Aart Heijboer. Research to fundamental building blocks of matter Research on the Universe using those particles.
1 Deep Sea Neutrino Telescope Detection Principle.
Kay Graf University of Erlangen for the ANTARES Collaboration 13th Lomonosov Conference on Elementary Particle Physics Moscow, August 23 – 29, 2007 Acoustic.
Neutrino Astronomy with KM3NeT  The KM3NeT physics case  What happened so far  The KM3NeT Conceptual Design Report  The Preparatory Phase: Towards.
ANTARES aims, status and prospects Susan Cartwright University of Sheffield.
Energy Reconstruction Algorithms for the ANTARES Neutrino Telescope J.D. Zornoza 1, A. Romeyer 2, R. Bruijn 3 on Behalf of the ANTARES Collaboration 1.
P. Sapienza, NOW 2010 The KM3NeT project  Introduction & Main objectives  The KM3NeT Technical Design Report  Telescope physics performance  New developments.
The ANTARES Neutrino Telescope Mieke Bouwhuis 27/03/2006.
A feasibility study for the detection of SuperNova explosions with an Undersea Neutrino Telescope A. Leisos, A. G. Tsirigotis, S. E. Tzamarias Physics.
Special Issues on Neutrino Telescopy Apostolos G. Tsirigotis Hellenic Open University School of Science & Technology Particle and Astroparticle Physics.
KM3NeT IDM/TeVPA conference 23  28 June 2014, Amsterdam, the Netherlands Maarten de Jong on behalf of the KM3NeT collaboration The next generation neutrino.
Paolo Piattelli - KM3NeTIAPS - Golden, 6-8 may 2008 KM3NeT: a deep-sea neutrino telescope in the Mediterranean Sea Paolo Piattelli - INFN/LNS Catania (Italy)
Search for point sources of cosmic neutrinos with ANTARES J. P. Gómez-González IFIC (CSIC-Universitat de València) The ANTARES.
KM3NeT The Birth of a Giant V. Popa, KM3NeT Collaboration Institute for Space Sciences, Magurele-Bucharest, Romania.
Hanoi, Aug. 6-12, 2006 Pascal Vernin 1 Antares Status report P.Vernin CEA Saclay, Dapnia On behalf of the Antares collaboration P.Vernin
Coincidence analysis in ANTARES: Potassium-40 and muons  Brief overview of ANTARES experiment  Potassium-40 calibration technique  Adjacent floor coincidences.
C.DistefanoCRIS 2008 – Salina, September The KM3Net Consortium Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud Towards a km3-scale.
Exploring the Cosmos with Neutrinos Aart Heijboer …all of them. nm
Apostolos Tsirigotis Simulation Studies of km3 Architectures KM3NeT Collaboration Meeting April 2007, Pylos, Greece The project is co-funded by the.
Status of KM3NeT (Detector Design Optimisations) Christopher Naumann, CEA Saclay – IRFU / SPP for the KM3NeT consortium 44 th Reconcontres de Moriond,
Petten 29/10/99 ANTARES an underwater neutrino observatory Contents: – Introduction – Neutrino Astronomy and Physics the cosmic ray spectrum sources of.
Neutrinos as Cosmic Messengers in the Era of IceCube, ANTARES and KM3NeT Uli Katz ECAP / Univ. Erlangen Vulcano Workshop 2012 Frontier Objects.
1 ANTARES a Neutrino Telescope in the Mediterranean Sea 31/01/2014 Salvatore Mangano.
CEA DSM Irfu The ANTARES Neutrino Telescope A status report Niccolò Cottini on behalf of the ANTARES Collaboration 44 th Rencontres de Moriond February.
Piera Sapienza – VLVNT Workshop, 5-8 october 2003, Amsterdam Introduction and framework Simulation of atmospheric  (HEMAS and MUSIC) Response of a km.
V.Bertin CPPM / ANTARES Coll. - Moriond ANTARES : A deep-sea 0.1 km² neutrino telescope Vincent Bertin - CPPM-Marseille on behalf of the Antares.
SINP MSU, July 7, 2012 I.Belolaptikov behalf BAIKAL collaboration.
Special Issues on Neutrino Telescopy Apostolos G. Tsirigotis Hellenic Open University School of Science & Technology Particle and Astroparticle Physics.
Tools and Methods for simulation and evaluation of Very Large Volume Cherenkov Neutrino detectors: Optimization and Evaluation of proposed KM3NeT designs.
Physics results and perspectives of the Baikal neutrino project B. Shoibonov (JINR, Dubna) for the Baikal collaboration February 2009.
Antares Neutrino Telescope Jean-Pierre Ernenwein Université de Haute Alsace (On behalf of the ANTARES collaboration) Rencontres de Moriond, 13/03/2005.
Why Neutrino ? High energy photons are absorbed beyond ~ 150Mpc   HE  LE  e - e + HE s are unique to probe HE processes in the vicinity of cosmic.
Agustín Sánchez-Losa IFIC (CSIC-Universitat de València) Transient sources, like AGNs or Gamma Ray Bursters, are among.
KM3NeT International Solvay Institutes 27  29 May 2015, Brussels, Belgium. Maarten de Jong Astro-particle and Oscillations Research with Cosmics in the.
The NEMO Project: Toward a km 3 Neutrino Telescope in the Mediterranean Sea M. Circella, INFN Bari NUPPAC-05, Nov The NEMO Project (NEutrino Mediterranean.
Ronald Bruijn – 10 th APP Symposium Antares results and status Ronald Bruijn.
KM3NeT ‑ The Next Generation Neutrino Telescope Alexander Kappes IceCube Particle Astrophysics Symposium Union South, Madison, May 13, 2013.
NESTOR SIMULATION TOOLS AND METHODS Antonis Leisos Hellenic Open University Vlvnt Workhop.
Lepton - Photon 01 Francis Halzen the sky the sky > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist Fly’s.
CEA DSM Irfu Reconstruction and analysis of ANTARES 5 line data Niccolò Cottini on behalf of the ANTARES Collaboration XX th Rencontres de Blois 21 / 05.
The ANTARES detector: background sources and effects on detector performance S. Escoffier CNRS Centre de Physique des Particules de Marseille on behalf.
Antares Slow Control Status 2007 International Conference on Accelerator and Large Experimental Physics Control Systems - Knoxville, Tennessee - October.
The ORCA Letter of Intent Oscillation Research with Cosmics in the Abyss ORCA Antoine Kouchner University Paris 7 Diderot- AstroParticle and Cosmology.
R. Coniglione, VLVnT08, Toulon April ‘08 KM3NeT: optimization studies for a cubic kilometer neutrino detector R. Coniglione P. Sapienza Istituto.
PHY418 Particle Astrophysics
Astroparticle physics with large neutrino detectors  Existing detectors  Physics motivation  Antares project  KM3NeT proposal M. de Jong.
KM 3 Neutrino Telescope European deep-sea research infrastructure DANS – symposium Maarten de Jong.
STATUS AND PHYSICS GOALS OF KM3NET Paolo Piattelli P. Piattelli, ICHEP14 Valencia INFN – LNS, Catania (Italy)
Status and Perspectives of the BAIKAL-GVD Project Zh.-A. Dzhilkibaev, INR (Moscow), for the Baikal Collaboration for the Baikal Collaboration September.
Status report Els de Wolf Annual Meeting 2011, Nikhef.
Alexander Kappes ECAP, Universität Erlangen-Nürnberg for the KM3NeT Consortium 2009 EPS HEP, Krakow, 16. July 2009 The KM3NeT project: Towards a km 3 -scale.
First All-Sky Measurement of Muon Flux with IceCube IceCube REU Summer 2008 Kristin Rosenau Advisor: Teresa Montaruli.
KM3NeT Neutrino conference 2-7 June 2014, Boston, U.S.A. Maarten de Jong on behalf of the KM3NeT collaboration The next generation neutrino telescope in.
KM3NeT P.Kooijman Universities of Amsterdam & Utrecht for the consortium.
ANTARES Lessons learned from its completion
Imaging the Neutrino Universe with AMANDA and IceCube
P.Kooijman, UVA-GRAPPA, UU, Nikhef
Performance of flexible tower with horizontal extent
Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud
The Antares Neutrino Telescope
M.Bou-Cabo, J.A. Martínez.-Mora on behalf of the ANTARES Collaboration
Prospects and Status of the KM3NeT Neutrino Telescope E. Tzamariudaki
on behalf of the NEMO Collaboration
Claudio Bogazzi * - NIKHEF Amsterdam ICRC 2011 – Beijing 13/08/2011
ICRC2011, 32ND INTERNATIONAL COSMIC RAY CONFERENCE, BEIJING 2011
Presentation transcript:

MSU neutrino group activity in neutrino telescope projects MSU neutrino group activity in neutrino telescope projects

Neutrino and registration of them S = ½ S = ½ Reactions of weak interaction Reactions of weak interaction Small cross section of interaction Small cross section of interaction Neutrinos can provide information about hidden objects in the Universe Neutrinos can provide information about hidden objects in the Universe Difficulties with registration Difficulties with registration

High-energy protons neutrinos Deviation of low energy protons High-energy gamma rays I. Active galactic nuclei and Gamma-ray bursts (GRB)- are extremely powerful sources of particles and radiation in the Universe II. Protons are deviated by powerful electromagnetic fields (E<10 19 eV) of galaxies and interact with sources of electromagnetic fields III. Gamma rays interact with a cosmic background ( ɣ + ɣ ↔ e + e); they are absorbed in the interstellar space IV. Only neutrinos can penetrate from the most distant part of the Universe; pass cosmological distance; their direction corresponds to the direction to the source

Detection principle The main reactions Big energies=> we can assume that trajectories of the initial protons and final particles agree with accuracy => We can define the location of the source in the space by tracks of neutrinos

Current situation ANTARES (0.09 km^3) Toulon ANTARES (0.09 km^3) Toulon IceCube (1 куб.км), South Pole IceCube (1 куб.км), South Pole Baikal telescope (0.03 km^3) Baikal, Russia Baikal telescope (0.03 km^3) Baikal, Russia NEMO  KM3Net (1.2 km^3) Capo Passero NEMO  KM3Net (1.2 km^3) Capo Passero

The main directions of current activities of the MSU scientific group in Mediterranean neutrino projects Development and creation of optical modules Development and creation of optical modules Modelling and optimization of configuration of neutrino telescopes Modelling and optimization of configuration of neutrino telescopes Creation of filters of bioluminescence Creation of filters of bioluminescence Development of criteria for the reliability of events Development of criteria for the reliability of events Analysis of experimental data (ANTARES) Analysis of experimental data (ANTARES) Development of algorithm for the search of supernova Development of algorithm for the search of supernova Neutrino acoustic (KM3Net) Neutrino acoustic (KM3Net)

Current research related to neutrino physics Flux of atmospheric muons and neutrino Flux of atmospheric muons and neutrino Neutrino oscillations Neutrino oscillations Supernova remnants Supernova remnants Periodic sources Periodic sources - microquasars (о - microquasars (оne of participants is a black hole or a neutron star) - pulsars (spinning neutron star) active galactic nuclei (black holes) active galactic nuclei (black holes) Gamma-ray bursts (merging of double stars, merging of the pair neutron star - black hole, collapse of the star) Gamma-ray bursts (merging of double stars, merging of the pair neutron star - black hole, collapse of the star)

Flux of cosmic neutrino; limits of neutrino flux Flux of cosmic neutrino; limits of neutrino flux Ice Cube: lower threshold of registration > PeV for the Southern Hemisphere ANTARES: the lower limit >Tev (important for the galactic sources) Пунктир: Айскуб(IC22) dotted line (IceCube)

The spectrum of neutrinos from cosmic sources Восстановление энергии нейтрино. Сравнение с моделями атмосферного фона. 4 года данных (Reconstruction of energy of neutrinos. Comparisons with models of atmospheric background) Поиск потока нейтрино высоких энергий (E>30 ТэВ/TeV) (Search for flux of high-energy neutrino) → Не обнаружено значительного отличия от фона (significant differences from the background were not found) Улучшены результаты, опубликованные в PLB 696 (2011) 16 Results were improved and published in the PLB 696 (2011) 16

~70 m 12 lines (about 900 PMTs) 25 storeys / line 3 PMTs/storey 350 m 100 m 14.5 m Junction box Interlink cables 40 km to shore Horizontal layout Sea bed ~ m a storey ANTARES detector

Structure of the detector

Cherenkov method of neutrino registration мюон ~5000 ФЭУ neutrino Atmospheric muon Глубина (depth) >3000м I. Нейтрино, идущие из дальнего космоса, пронизывают Землю, взаимодействуя с веществом II. Взаимодействуя, нейтрино оставляет после себя заряженный лептон III. Мюоны от взаимодействия  излучают черенковское излучение Reconstruction of the muon track by the time and position of the activated PMT Дно Seabed Natural water Земля защищает от атмосферных мюонов. Восходящие мюоны только от нейтрино (космические, атмосферные) Interaction of neutrino in the Earth’s crust (заряж. ток) Source of the high- energy neutrino Registration of Cherenkov light Neutrino passes through the Earth

Е.В.Широков 22 ноября 2013 г. Учёный Совет НИИЯФ и ОЯФ

Distribution of the ratios of rates of muons for experimental data и Monte-Carlo modelling data; fit by Gauss function (Antares)

Atmospheric muon veto cosmic neutrinos atmospheric muons R 2 [10 3 m 2 ] z [m] vertex cut detector volume 1)All muons which are flying from the atmosphere – background muons 2)The source of muons, which are flying through the Earth, can be neutrinos, but only that neutrinos, which are from beyond Earth 3)Atmospheric muons cannot fly through the Earth (small energy)

Signal / Noise BDT (topology of event)  events / 6 months atmospheric muons atmospheric neutrinos (tracks) atmospheric neutrinos (showers) cosmic neutrinos (tracks) cosmic neutrinos (showers)

Прототипы башень Prototypes of towers НЕМО (NEMO) Фаза-I (Phase-I– минибашня (4 этажа) возле порта Катании; small tower (4 floors) near the port of Catania НЕМО (NEMO) Фаза-I (Phase-I ) – минибашня (4 этажа) возле порта Катании; small tower (4 floors) near the port of Catania НЕМО Фаза-II (Phase-II) – башня (8 этажей) Capo passero (3500 м); Tower (8 floors) Capo passero (3500 m) НЕМО Фаза-II (Phase-II) – башня (8 этажей) Capo passero (3500 м); Tower (8 floors) Capo passero (3500 m) KM3NeT Фаза 1.5 KM3NeT Фаза 1.5 –НЕМО Фаза-III (Phase-III) – 8 башень по 14 этажей, Capopassero; 8 towers with 14 floors in each tower, Capopassero –24 струны с МультиФЭУ (24 strings with MultiPMT)

НЕМО Фаза-I (NEMO Phase-I) Установка рядом с портом Катании (installation near to the port of Catania) Установка рядом с портом Катании (installation near to the port of Catania) Проверка всех ключевых элементов конструкции (сheck all structural elements) Проверка всех ключевых элементов конструкции (сheck all structural elements) Проверка раскрытия башни (Check the opening of the tower) Проверка раскрытия башни (Check the opening of the tower)

НЕМО Фаза-II (NEMO Phase- II) установка на глубине 3500 м (installation at a depth of 3500 m) установка на глубине 3500 м (installation at a depth of 3500 m) более года работы (more than a year of work) более года работы (more than a year of work)

НЕМО Фаза-III (NEMO Phase-III) Установка соединительной коробки и одной струны (installation of the junction box and one string ) Установка соединительной коробки и одной струны (installation of the junction box and one string ) Доведение конфигурации до целого блока (8 струн по 14 этажей по 6 ФЭУ 10’’) bringing up the configuration to the whole block (8 strings with 14 floors with 6 PMT 10 '') Доведение конфигурации до целого блока (8 струн по 14 этажей по 6 ФЭУ 10’’) bringing up the configuration to the whole block (8 strings with 14 floors with 6 PMT 10 '')

KM3Net project Предполагаемые сроки сооружения (time of developing) – гг. Предполагаемые сроки сооружения (time of developing) – гг. Предполагаемый объём – 1.2 куб.км (volume 1.2 km^3) Предполагаемый объём – 1.2 куб.км (volume 1.2 km^3) Nemo Capo Passero, Italy m

KM3NeT Архитектура architecture нейтринный телескоп neutrino telescope береговая станция shore station удалённый доступ к данным удалённый контроль distance control onoff компьютерный центр computer center Distance access to data

KM3NeT Фаза башень 8 towers 14 этажей в башне 14 floors in the tower 8 м длина этажа length of the floor equals 8 m height of the floor 20 m общая. выс. total height. ~ 450 m ~ 450 m 6 ОМ+ 2 гидрофона/этаж; 6 OM + 2 hydrophone / floor ~ 100 м между башнями ; ~ 100 m between towers 24 струны 24 strings 20 Оптических модулей на струне (20 optical modules on a string ) Оптический модуль (мульти- ФЭУ) Optical module (multi-PMT) ~ 600 m ‒ 31 x 3” ФЭУ 31 x 3“ PMT ‒LED & акуст. пьезо LED & acust. piezo ‒FPGA контроль и обработка данных FPGA control and data processing

Установка installation Reusable coil Disclosure after connecting on the seabed PMT Key features: – Timing ≤ 4.5 ns (FWHM) – QE ≥ 25-30% – collection efficiency ≥ 90% – photon counting purity 100% (by hits) (by hits) – price/cm 2 ≤ 10” PMT ETEL ETEL D792Hamamatsu R12199 HZC XP53B20

The main results of MSU sсientific group in the Mediterranean sea neutrino projects: - были разработаны различные прототипы фотоумножителей, которые могут применятся для работы в составе глубоководных телескопов. (various prototypes of photomultipliers have been developed, which can be applied for the work in deep-sea telescopes) - были разработаны различные прототипы фотоумножителей, которые могут применятся для работы в составе глубоководных телескопов. (various prototypes of photomultipliers have been developed, which can be applied for the work in deep-sea telescopes) - решена проблемы биолюминисценции, свойственной детекторам, работающим в морской воде. В ходе проведённой работы удалось успешно создать несколько фильтров биолюминисценции, что позволило существенно ускорить расшифровку получаемых сигналов (the problem of bioluminescence was fixed; during the process of this work multiple bioluminescence filters were successfully created, which will significantly speed up the decoding of received signals. - решена проблемы биолюминисценции, свойственной детекторам, работающим в морской воде. В ходе проведённой работы удалось успешно создать несколько фильтров биолюминисценции, что позволило существенно ускорить расшифровку получаемых сигналов (the problem of bioluminescence was fixed; during the process of this work multiple bioluminescence filters were successfully created, which will significantly speed up the decoding of received signals. -разработан новый алгоритм поиска сверхновых, используемый для возможного обнаружения данного типа астрофизических объектов, являющихся источниками космических нейтрино. Данный алгоритм существенно улучшает так называемый «коэффициент качества» обработки информации при регистрации нейтринных потоков от возможных вспышек (new algorithm for finding supernovae has been developed; it is used to detect this type of possible astrophysical objects; they are sources of cosmic neutrinos. This algorithm significantly improves a so-called "quality factor" of information processing in registration of neutrino fluxes from possible outbreaks) -разработан новый алгоритм поиска сверхновых, используемый для возможного обнаружения данного типа астрофизических объектов, являющихся источниками космических нейтрино. Данный алгоритм существенно улучшает так называемый «коэффициент качества» обработки информации при регистрации нейтринных потоков от возможных вспышек (new algorithm for finding supernovae has been developed; it is used to detect this type of possible astrophysical objects; they are sources of cosmic neutrinos. This algorithm significantly improves a so-called "quality factor" of information processing in registration of neutrino fluxes from possible outbreaks) -выполнена работа по моделированию различных конфигураций оптических модулей для сооружаемого нейтринного телескопа с объёмом свыше 1 км3. Подобное моделирование позволяет не только повысить эффективность детектора, но и уменьшить затраты на его сооружение (work on modeling of different configurations of optical modules has been processed. This modeling allows not only to improve the efficiency of the detector, but also to reduce the cost of its construction) -выполнена работа по моделированию различных конфигураций оптических модулей для сооружаемого нейтринного телескопа с объёмом свыше 1 км3. Подобное моделирование позволяет не только повысить эффективность детектора, но и уменьшить затраты на его сооружение (work on modeling of different configurations of optical modules has been processed. This modeling allows not only to improve the efficiency of the detector, but also to reduce the cost of its construction) - выполнен анализ большого количества экспериментальных данных от детектора ANTARES за период гг; опробованы несколько различных критериев отбора событий для анализа данных; начаты работы по возможному гидроакустическому обнаружению астрофизических нейтрино (the analysis of a large number of experimental data from the detector ANTARES for the period has been done; we tested a number of different criteria for the selection of events for analysis; started work on a possible acoustic detection of astrophysical neutrinos) - выполнен анализ большого количества экспериментальных данных от детектора ANTARES за период гг; опробованы несколько различных критериев отбора событий для анализа данных; начаты работы по возможному гидроакустическому обнаружению астрофизических нейтрино (the analysis of a large number of experimental data from the detector ANTARES for the period has been done; we tested a number of different criteria for the selection of events for analysis; started work on a possible acoustic detection of astrophysical neutrinos)

Thank you for your attention