P.F.Timmer Nikhef Amsterdam Electronics- Technology 1 Low power HV supply with signal amplifier Base for a 10 dynodes HAMAMATSU PMT in single photon count.

Slides:



Advertisements
Similar presentations
CHAPTER 3: SPECIAL PURPOSE OP-AMP CIRCUITS
Advertisements

Electronics Principles & Applications Sixth Edition Chapter 13 Integrated Circuits (student version) ©2003 Glencoe/McGraw-Hill Charles A. Schuler.
555 Timer ©Paul Godin Updated February Oscillators ◊We have looked at simple oscillator designs using an inverter, and had a brief look at crystal.
The Multi-PMT Optical Module P.Kooijman, University of Amsterdam University of Utrecht Nikhef.
1 LHCb CALO commissioning meeting Anatoli Konoplyannikov /ITEP/ Proposal of the ECAL CW base modification + Anatoli, Michail ( Michail Soldatov.
   >>> 
Anode Front-End Electronics current status Presented by Nikolay Bondar. Fermilab. 09/08/00.
Passive Components: Capacitors & Resistors
Spectrum Analyzer Ray Mathes, Nirav Patel,
Chapter 1 Quick review over Electronics and Electric Components Prepared By : Elec Solv.
BASIC ELECTRONICS.
HIGH DENSITY DESIGN COMPONENT SOLUTIONS. Technology Challenges Market Drivers:  Make it smaller  Make it operate faster  Make it more efficient  Make.
Digital and Analog Quantities
Team Members Jordan Bennett Kyle Schultz Min Jae Lee Kevin Yeh.
Status of LAV FEE electronics G. Corradi, C. Paglia, D. Tagnani & M. Raggi, T. Spadaro, P. Valente.
Preliminary Design Review May 20, 2003 PMT HV Base Board Engineering Requirements Nobuyoshi Kitamura SSEC / UW-Madison.
A multi-chip board for X-ray imaging in build-up technology Alessandro Fornaini, NIKHEF, Amsterdam 4 th International Workshop on Radiation Imaging Detectors.
Ch4 Electronic Components Circuit/Schematic Symbols.
KUMU A’O CUBESAT Amy Blas. Background 2 What is CubeSat?  10x10x10 centimeter cube  Launched in lower earth orbit (LEO)  The project started last.
Electronics for PS and LHC transformers Grzegorz Kasprowicz Supervisor: David Belohrad AB-BDI-PI Technical student report.
Shiv Yukeun Donghan Robert.  Project overview  Project-specific success criteria  Block diagram  Component selection rationale  Packaging design.
U.B. Presentation October Bernard COURTY L.P.C.C. College de France - Paris.
© 2013 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill 13-1 Electronics Principles & Applications Eighth Edition Chapter 13 Integrated.
Anatoli Konoplyannikov Design and integration of HV, LED monitoring and calibration system for HCAL Overview of the subsystems design High voltage.
PWM Circuit Based on the 555 Timer. Introduction In applications LED Brightness Control we may want to vary voltage given to it. Most often we use a variable.
CMS ECAL End Cap Meeting CERN 19 June to 23 June 2000 A.B.Lodge - RAL 1 ECAL End Cap High Voltage Cards and 2000 Electrical/Thermal Model. Progress on.
Electronic Components Circuit/Schematic Symbols. RESISTOR Resistors restrict the flow of electric current, for example a resistor is placed in series.
P.F.Timmer Nikhef Amsterdam Electronics- Technology Very low power, High Voltage base for a Photo Multiplier Tube for the KM3NeT deep sea neutrino telescope.
Team 2: Bluetooth Mass Storage Device By Ryan Weaver Preliminary PCB Layout and Design Narrative 1 Yucel ParsakYuri Kubo Scott PillowRyan Weaver.
Acquisition Crate Design BI Technical Board 26 August 2011 Beam Loss Monitoring Section William Vigano’ 26 August
CARDIAC meeting – 30 Sept 05 M3R3-M5R3-M5R4 FEE status.
Meteor Receiver Andrew Thoni Charlie Hunter Greg Watkins Nick Nicholson Will Marshall.
Technician License Course Chapter 3 Lesson Plan Module 6 – Part 1 Electrical Components 21 March 2015.
January, 2003CMS Ecal1 MGPA Specification Discussion – 9 th Jan. 03 OUTLINE 3 or 4 gain channels discussion technical background - why 3 gains could be.
PCB DESIGN Dr. P. C. Pandey EE Dept, IIT Bombay Rev. Jan’16.
A Cockcroft-Walton HV-Generator / PMT-Base for NPS Joshua Frechem Charles Hyde Old Dominion University 21 Jan 2016.
Wireless Power Transfer Via Inductive Coupling SENIOR DESIGN GROUP 1615 RYAN ANDREWS, MICHAEL DONOHUE, WEICHEN ZHANG.
ACCURATE ELECTRONIC STOPWATCH
Electrical Testers Basic test equipment used in today’s shops may include an analog type meter, a VAT (Volt-Amp-Tester), DMM (Digital Multimeter),
© Date: 10/07 vinvin Product Presentation High-Speed, Microcontroller-adaptable, PWM Controller MCP1631 October 2007.
G. Kieft Nikhef Amsterdam Electronics- Technology PMT tubes PMT bases PMT asic’s Automatic tester for PMT bases Camac test set-up for PMT tubes LeCroy.
Done by: Khalid Hijjawi Mohammad Massad.  Is an electrical instrument that measures electrical resistance, the opposition to an electric current. The.
CoCo – Cockroft Walton Feedback Control Circuit Deepak G, Paul T, Vladimir G 1D. Gajanana ET On the behalf of.
TITLE: 555 Timer OM INSTITUTE OF TECHNOLOGY Subject: Analog Electronics ( ) Semester: 03 Prepared By:
CERN LHC RF Power Systems
32ch Beam-Former for Medical Ultrasound Scanner Performed by : Alaa Mozlbat, Hanna Abo Hanna. Instructor : Evgeniy Kuksin.
DU power Principle diagram OM inventory Conversions VEOC behavior DU to network Pending issues mPMT-Bar.
Farmer Friendly Solar Based Electric Fence
Electronic Devices Ninth Edition Floyd Chapter 14.
Presentation 3: Detailed Design and DFM considerations
EKT124 Digital Electronics 1 Introduction to Digital Electronics
Setup for automated measurements (parametrization) of ASD2 chip
NRSNS Series Automotive Grade Thick Film Resistor Arrays
Detailed Block Design Presentation 3 (P3)
CHARGE AND LOAD PROTECTION IN SOLAR POWER MANAGEMENT
Status multiPMT OM design
Solar Inverter.
Calorimeter Mu2e Development electronics Front-end Review
ECE477 Midterm Design Review: Team #8
CPU1 Block Specifications
555 Timer EEE DEPARTMENT KUMPAVAT HARPAL( )
Block Diagram Transmitter Receiver × 2 Transmitter Power Supply ADC
Implementation of Solar Inverter for
High-Voltage Supply Requirements Review
Principles & Applications
Power Block Implementation
High Current V-I Circuits
SOLAR POWER CHARGE CONTROLLER
Integrated Circuits Computer Signals
Radhabai Kale mahila mahavidyalaya,ahmednagar Department of Physics
Presentation transcript:

P.F.Timmer Nikhef Amsterdam Electronics- Technology 1 Low power HV supply with signal amplifier Base for a 10 dynodes HAMAMATSU PMT in single photon count mode P.F.Timmer Reference: Amsterdam

P.F.Timmer Nikhef Amsterdam Electronics- Technology 2 PMT-base. Version-1  Low power  Low RFI  Low ripple  Adjustable HV  Small foot print Optical module Incl. Storey logic Version Amsterdam Requirements

P.F.Timmer Nikhef Amsterdam Electronics- Technology 3 E/O Diagram switch pre- amp comp th dac decoder photons 3V3 sphere logic switch 3V3 12V tim.,sc conversions lnln l n+1 osc.1 feed back hv dac HV i2c PMT-base cpld Octopus CLB i2c PMT-module ID extra electr. LVDS pin BOB 2 analog.out Amsterdam

P.F.Timmer Nikhef Amsterdam Electronics- Technology 4 PMT proposed form factor <105 dimensions in mm PCB space Amsterdam

P.F.Timmer Nikhef Amsterdam Electronics- Technology 5 HV generation U hv kd1d1 d2d2 d9d9 d 10 a k d1d1 d2d2 d9d9 a U hv ~ CbCb CpCp Resistor base Cockroft Walton base +Low power -Fixed voltage ratio - High power -Temp. Sensitive - Volume Amsterdam

P.F.Timmer Nikhef Amsterdam Electronics- Technology 6 Simplified diagram of HAM_PROMiS2_V1 base Voltage ratio: total 13 steps Amsterdam n

P.F.Timmer Nikhef Amsterdam Electronics- Technology 7 HV actual wave forms K D1 D9 D10 I-fet Amsterdam

P. F.Timmer Nikhef Amsterdam Electronics- Technology Select components which can withstand the high voltage in the CW multiplier. Check dissipation of every component. Check distance on PCB between high voltage components. Determine on which side of the PCB which part of the circuit will be placed. Find a connector system which is sturdy enough. Design considerations Amsterdam

P. F.Timmer Nikhef Amsterdam Electronics- Technology Overview component specs Amsterdam #RefdesValueAppliedMaximumActualMaximumActualMaximumPartActualMaximumpackagePart discription voltageratedreverse current Typepower voltage dissipation (V) (mA) (mW) 1 C14, C32, C37 100nF3,350 Ceramic Chip 603General purpose MLCC 0603 X7R 100nF E6 range 2 C34 1uF26,3Ceramic Chip 603General purpose MLCC 0603 X5R 1uF E3 range 3 C29, C30, C33, C39 10uF3,36,3Ceramic Chip 603General purpose MLCC 0603 X5R 10uF E3 range 4 C41 10pF3,325Ceramic Chip 402General purpose MLCC 0402 NP0 10pF E12 range 5 C36, C43 100nF3,36,3Ceramic Chip 402General purpose MLCC 0402 X5R 100nF E6 range 6 C38 220pF3,350Ceramic Chip 603General purpose MLCC 0603 NP0 220pF E12 range 7 C10, C12, C16, C28 47nF115200Ceramic Chip 805Middle voltage series 0805 X7R 47nF E12 range 8 C1, C2, C3, C4, C5, C6, C7, C8 22nF115200Ceramic Chip 805Middle voltage series 0805 X7R 22nF E12 range C9, C11, C13, C15, C17 805Middle voltage series 0805 X7R 22nF E12 range 9 C20, C21, C22, C23, C24, C25, C26 100nF115200Ceramic Chip 1206Middle voltage series 1206 X7R 100nF E12 range C27, C31, C35, C40, C42, C Middle voltage series 1206 X7R 100nF E12 range 10 R RM 0, General purpose Rsmd R E96 11 R2, R RM 0, General purpose Rsmd K E96 12 R13, R RM 0, High value Rsmd M47 E96 range 13 R RM 0, High value Rsmd M0 E96 range 14 R1 1,5050RM 0, General purpose Rsmd R5 E24 range 15 R4, R RM 0, General purpose Rsmd R E24 range 16 R3, R7, R8, R RM 0, General purpose Rsmd K E24 range 17 R RM 0, Precision High Value Chip Resistor 18 D1, D2, D3, D4, D5, D6, D7, D8 SWITCHING DIODE sot 223Dual, isolated high speed silicon switching diodes. Pin 2 and 5 removed for isolation D9, D10, D11, D12, D13, D14 SWITCHING DIODE sot 223Dual, isolated high speed silicon switching diodes. Pin 2 and 5 removed for isolation 19 U2 COCO 3,33,6 1,5250DFN8COCO V2, SMT, DFN-8+EP 20 U5PROMiS23,33, QFN16PROMIS V2, SMT, QFN-16+EP, UTAC 21T1PMF370XN3, N-channel TrenchMOS extremely low level FET 22L8auto transformer EP7 EP7 Coil Assembly, designed for project L1, L4inductor1210Chip Inductor, 22uH, 10%, SMT 24L3, L5, L6, L9bead 603FERRITE BEAD, 0603, 600 OHM 25J1Connector Tiger Eye Socket, SEM series. 2x5p with 2 non-symmetrical placed welding pins

P. F.Timmer Nikhef Amsterdam Electronics- Technology Limited space. High dv/dt in parts of the circuit. High voltage on PCB. Constraint editor is used. Very low signal amplification. For one photon 480 fC (PMT gain = 3E+6) DFM check of the PCB. Layout Amsterdam

P.F.Timmer Nikhef Amsterdam Electronics- Technology Fit rate components number of componentsComponentFittotal Fit 1 COG capacitors22 36X74 capacitors Small signal Si diode7196 1Si small signal Transistors12 13Metal film, 1%791 1Op Amps, Comparators (COCO)130 1Complex, Instrumentation Amp (PROMiS2)200 1Transformers10 5Inductor Surface-mount solder joint (2/solder joint)220 10I/O connectors (1/contact) Reliability of components Tests evaluation 45 °C : 865 FIT Stress factors; Stationary use: °C: 0.18 Evaluated value: 200 FIT Amsterdam 22% 9% 15% 4% 9% 12% 20% 9% system management components design manufactering ware out induced no defects software

P.F.Timmer Nikhef Amsterdam Electronics- Technology 12 Specifications HV circuit, for 10 dynodes PMT Low ripple 706 mV < T(°C) < % 8.5 < T(°C) < 22.1 Voltage stable at 3 V < Vinput < 3.6 V Low total power Vinput 3.3 V 4,5 mW 1500V for HV generation 30 mW for PROMiS2 Low RFI dV/dt < 75 mV/µs, RFI kHz-10 MHz Adjustable HV cathode voltage -700 _ V Adjustable threshold for pulse width adjustment ~ 30nSec for one photon Small foot print PCB = 43 mmØ Reliability °C, stationary use, after tests Amsterdam

P. F.Timmer Nikhef Amsterdam Electronics- Technology Validation tests chips ◦ Tests the PROMiS2 and COCO chips by a test house. ◦ (Functional, HTOL, HTSL, ESD ad Q&R tests.) PCB tests ◦ Storage; Tamb->30min-10 °C ->1h->60 °C ->1h->60 °C ->-10 °C ->30min->Tamb ◦ Temp. Shock; Tamb->Tamb+50 °C ->1h->Tamb+50 °C -> 0sec ->Tamb ◦ Influence oscillator frequency on PMT output Acceptance tests (meet specifications) ◦ Done with PMT base tester Cleaning + Drying ◦ Ultra sone Coating ◦ Polyurethane Test procedures Amsterdam

P. F.Timmer Nikhef Amsterdam Electronics- Technology 14 Pr om is PROMIS o mi CoCo CW High Voltage circuit HV measurement unit 1 supply HV barrier HV measurement unit 14 supply HV barrier PMT base adapter Control Board PMT Tail Adapter Voltage Adjustment and Current measurement Test PROMIS outputs Safety system Electronics for charge injection PROMIS Test HV Control And I2C Digital value HV control Digital value of inter dynode voltages Digital value for charge adjust Digital value PROMIS outputs CoCo test frequentie and pulse width Digital values frequency and pulse width PMT base Discharge capacitors from CW high voltage circuit Test setup Amsterdam

P. F.Timmer Nikhef Amsterdam Electronics- Technology Check if supply current is in range. Check I2C communication. Check DACHV output of PROMiS2. Check switch output of COCO. Check pulse width of switch output of COCO. Check maximum frequency of COCO. Check if HV is coming up. All inter dynode voltages are measured separately. Check range of HVDAC output and HV output. (steps of 50V). Check if HV diodes and capacitors don’t leak. Check system with supply voltage variations from 3V – 3.6V. Check pulse width output of PROMiS2 when charge is injected. Comparator DAC will be set to give the right pulse width. Check analogue output of PROMiS2 when charge is injected. PMT functionality tests Amsterdam

P. F.Timmer Nikhef Amsterdam Electronics- Technology Mechanical overview of tester 16 PMT Base adapter set with contact pins PMT base to be tested Mother board HV measurement unit (Mezzanine) FPGA board with USB interface to PC Amsterdam

P. F.Timmer Nikhef Amsterdam Electronics- Technology The test setup Amsterdam

P. F.Timmer Nikhef Amsterdam Electronics- Technology Control panel for test setup

P. F.Timmer Nikhef Amsterdam Electronics- Technology Start up wave forms of dynode connections Amsterdam

P. F.Timmer Nikhef Amsterdam Electronics- Technology Discharge waveforms of dynode connections Amsterdam

P. F.Timmer Nikhef Amsterdam Electronics- Technology File with test results Amsterdam Tester number:0 Timestamp: :24 Base Type:Hamamatsu Serial number PROMiS (x):0000AE Serial Number Base Base Power VBase (V)IBase (mA) HV Test DACPROMiS (V)Pulse Freq Min (Hz)Pulse Freq Max (Hz)D0D1D2D3D4D5D6D7D8D9D10D11D12Total Inf HV Test VBase Sweep VBase (V)PROMiS (V)Pulse Freq Min (Hz)Pulse Freq Max (Hz)D0D1D2D3D4D5D6D7D8D9D10D11D12Total HV Test Discharge VBase (V)PROMiS (V)Pulse Freq Min (Hz)Pulse Freq Max (Hz)D0D1D2D3D4D5D6D7D8D9D10D11D12Total HV Test Max Frequency VBase (V)PROMiS (V)Pulse Freq Min (Hz)Pulse Freq Max (Hz)D0D1D2D3D4D5D6D7D8D9D10D11D12Total Analog Buffer VBase (V)IBase (mA) An Ch DACAnalog PROMiS (mV)TDC (nsec)

P.F.Timmer Nikhef Amsterdam Electronics- Technology 22 Where are we now?  Little update of PCB layout  Test setup is functional Acceptance test  Production PMT Tender  Assembling with PM Soldering? Cleaning, coating device Testing?  Where External? Internal? Institute? Amsterdam K Dy5 Dy4 Dy3 Dy2 Dy1 Dy6 Dy7 Dy8 Dy9 Dy10 P nc Anode Base for Hamamatsu PMT

P. F.Timmer Nikhef Amsterdam Electronics- Technology 10 prototypes of the HAM_PROMiS2_V1 are produced, tested and functional. 80 bases for a pre series are produced. 72 are tested and functional. 8 bases are still in a panel. 72 bases are sent to Erlangen. 540 base arrived. The preparation for a tender of bases has started. Status of the bases Amsterdam

P. F.Timmer Nikhef Amsterdam Electronics- Technology Questions Amsterdam

P. F.Timmer Nikhef Amsterdam Electronics- Technology Temerature influence DAC value versus HV Tail protection against HV RoHS directive (thin whiskers) Hamamatsu tube with base Extra sheets Amsterdam

P. F.Timmer Nikhef Amsterdam Electronics- Technology Temperature influence (shock test) Amsterdam

P. F.Timmer Nikhef Amsterdam Electronics- Technology Temperature influence Amsterdam

P. F.Timmer Nikhef Amsterdam Electronics- Technology DAC value to HV value 28 DAC=HEX2DEC(dac)HV=3.0887*DAC DAC=0.3238*HV dac=DEC2HEX(DAC) Amsterdam

P. F.Timmer Nikhef Amsterdam Electronics- Technology HV-protection 29 Protect HV from neighbour bases Protect neighbour tails from HV Amsterdam

P. F.Timmer Nikhef Amsterdam Electronics- Technology RoHS directive Restriction of the use of certain Hazardous Substances in electronic equipment. Consequences; Higher solder temperatures (up to 260°C) Favorite solder: SnAgCu alloy (217°C) Chance for more excessive tin whisker growth Tin whiskers, length up to 10mm, diameter up to 10µm. Optimal growth at 50°C Ref: electrical short circuits debris, contamination, metal vapor arc, due to HV. Image Courtesy of T. Riccio (STPNOC) Conformal coating like Parylene C tends to buckle the whisker Amsterdam