Distributed (Direct ) Interconnection Networks AMANO, Hideharu Textbook pp. 140-147.

Slides:



Advertisements
Similar presentations
Comparison Of Network On Chip Topologies Ahmet Salih BÜYÜKKAYHAN Fall.
Advertisements

Data Communications and Networking
PERMUTATIONS AND COMBINATIONS
Is Charlie Brown a Loser? Do you think you know your real character? Do you actually know, for example, the good and bad points about yourself? It is.
9.線形写像.
時間的に変化する信号. 普通の正弦波 は豊富な情報を含んでいません これだけではラジオのような複雑な情報 を送れない 振幅 a あるいは角速度 ω を時間的に変化 させて情報を送る.
九州大学 岡村研究室 久保 貴哉 1. 利用中のAPの数の推移 2 横軸:時刻 縦軸:接続要求数 ・深夜では一分間で平均一台、 昼間では平均14台程度の接続 要求をAPが受けている。 ・急にAPの利用者数が増えてく るのは7~8時あたり.
麻雀ゲーム 和島研究室 ソ 小林巧人
5.連立一次方程式.
素数判定法 2011/6/20.
1章 行列と行列式.
フーリエ級数. 一般的な波はこのように表せる a,b をフーリエ級数とい う 比率:
9.通信路符号化手法1 (誤り検出と誤り訂正の原理)
Excelによる積分.
1 6.低次の行列式とその応用. 2 行列式とは 行列式とは、正方行列の特徴を表す一つのスカ ラーである。すなわち、行列式は正方行列からスカ ラーに写す写像の一種とみなすこともできる。 正方行列 スカラー(実数) の行列に対する行列式を、 次の行列式という。 行列 の行列式を とも表す。 行列式と行列の記号.
計算のスピードアップ コンピュータでも、sin、cosの計算は大変です 足し算、引き算、掛け算、割り算は早いです
線形符号(10章).
複素数.
1 9.線形写像. 2 ここでは、行列の積によって、写像を 定義できることをみていく。 また、行列の積によって定義される写 像の性質を調べていく。
通信路(7章).
ビット. 十進数と二進数 十進数  0から9までの数字を使って 0、1、2、3、4、5、6、7、8、9、 10、11、12 と数える 二進数  0と1を使って 0、1、10、11、100、101、11 0、111 と数える.
3.正方行列(単位行列、逆行列、対称行列、交代行列)
1 Interconnection Networks Direct Indirect Shared Memory Distributed Memory (Message passing)
1 Lecture 23: Interconnection Networks Topics: communication latency, centralized and decentralized switches (Appendix E)
JPN 312 (Fall 2007): Conversation and Composition Contraction (2); 意見を言う (to express your opinion)
Three-Year Course Orientation International Course.
Interconnection Networks 1 Interconnection Networks (Chapter 6) References: [1,Wilkenson and Allyn, Ch. 1] [2, Akl, Chapter 2] [3, Quinn, Chapter 2-3]
方程式を「算木」で 解いてみよう! 愛媛大学 教育学部 平田 浩一.
C言語応用 構造体.
Communication operations Efficient Parallel Algorithms COMP308.
プログラミングⅠ( 2 組) 第 1 回 / pLB1.pptx.
8.任意のデータ構造 (グラフの表現とアルゴリズム)
Interconnection Network Topologies
LANG3910 Japanese Ⅲ Lesson 14 依頼・現在進行形. 学習項目 1. 「て -form 」 2. 依頼表現 An expression of request 3. 相手の意向を尋ねる Ask someone’s mind 4. 現在進行形 Actions in Progress.
1 Lecture 25: Interconnection Networks Topics: communication latency, centralized and decentralized switches, routing, deadlocks (Appendix E) Review session,
Kitenet の解析 (110118) 九州大学 工学部 電気情報工学科 岡村研究室 久保 貴哉.
1 Static Interconnection Networks CEG 4131 Computer Architecture III Miodrag Bolic.
ECE669 L16: Interconnection Topology March 30, 2004 ECE 669 Parallel Computer Architecture Lecture 16 Interconnection Topology.
Permutation A permutation is an arrangement in which order matters. A B C differs from B C A.
Interconnect Network Topologies
Interconnect Networks
CSE Advanced Computer Architecture Week-11 April 1, 2004 engr.smu.edu/~rewini/8383.
Centralized (Indirect) switching networks Computer Architecture AMANO, Hideharu Textbook pp. 92~13 0.
Switches and indirect networks Computer Architecture AMANO, Hideharu Textbook pp. 92~13 0.
Centralized switching networks Computer Architecture AMANO, Hideharu Textbook pp. 92~13 0.
Centralized switching networks Computer Architecture AMANO, Hideharu Textbook pp. 92~13 0.
Ch. 6: Permutations!.
InterConnection Network Topologies to Minimize graph diameter: Low Diameter Regular graphs and Physical Wire Length Constrained networks Nilesh Choudhury.
Anshul Kumar, CSE IITD ECE729 : Advanced Computer Architecture Lecture 27, 28: Interconnection Mechanisms In Multiprocessors 29 th, 31 st March, 2010.
Arrangements, Permutations & Combinations
Discrete Optimization (離散最適化) Linear Programming (線形計画) Nonlinear Programming (非線形計画) Network optimization (ネットワーク計画) Mathematical Programming (数理計画)
Performance, Cost, and Energy Evaluation of Fat H-Tree: A Cost-Efficient Tree-Based On-Chip Network Hiroki Matsutani (Keio Univ, JAPAN) Michihiro Koibuchi.
Super computers Parallel Processing
Algebra 1 Predicting Patterns & Examining Experiments Unit 7: You Should Probably Change Section 4: Making Choices.
Prof. Noriyoshi Yamauchi
Algebra 1 Predicting Patterns & Examining Experiments Unit 7: You Should Probably Change Section 2: Making Arrangements.
Topology How the components are connected. Properties Diameter Nodal degree Bisection bandwidth A good topology: small diameter, small nodal degree, large.
Interconnection Networks Communications Among Processors.
Organic Molecule Building Block
Lecture 23: Interconnection Networks
Connection System Serve on mutual connection processors and memory .
Interconnection Network Design Lecture 14
Static Interconnection Networks
High Performance Computing & Bioinformatics Part 2 Dr. Imad Mahgoub
Advanced Computer Architecture 5MD00 / 5Z032 Multi-Processing 2
Welcome to the World of Algebra
Within Subjects (Participants) Designs
Embedded Computer Architecture 5SAI0 Interconnection Networks
Static Interconnection Networks
The Shapley-Shubik Power Index
Presentation transcript:

Distributed (Direct ) Interconnection Networks AMANO, Hideharu Textbook pp. 140-147

Distributed( Direct Interconnection ) Networks Nodes are connected with links directly. Locality of communication can be used. Extension to large size is easy.

Basic direct networks Linear Ring Central concentration Tree Complete connection Mesh

Metrics of Direct interconnection network ( D and d) Diameter : D  Number of hops between most distant two nodes through the minimal path degree: d  The largest number of links per a node. D represents performance and d represents cost Recent trends: Performance: Throughput Cost: The number of long links

Diameter 2(n-1)

Other requirements Uniformity : Every node/link has the same configuration. Expandability: The size can be easily extended. Fault Tolerance: A single fault on link or node does not cause a fatal damage on the total network. Embeddability: Emulating other networks Bisection Bandwidth

bi-section bandwidth The total amount of data traffic between two halves of the network.

Hypercube

Routing on hypercube 0101→ 1100 Different bits

The diameter of hypercube 0101→1010 All bits are different → the largest distance

Characteristics of hypercube D=d= logN High throughput, Bisection Bandwidth Enbeddability for various networks Satisfies all fundamental characteristics of direct networks ( Expandability is questionable ) Most of the first generation of NORA machines are hypercubes ( iPSC , NCUBE , FPS-T )

Problems of hypercube Large number of links  Large number of distant links  High bandwidth links are difficult for a high performance processors. Small D does not contribute performance because of innovation of packet transfer. Programming is difficult: → Hypercube’s dilemma

Is hypercube extendable? Yes ( Theoretical viewpoint )  The throughput increases relational to the system size. No ( Practical viewpoint )  The system size is limited by the link of node.

Hypercube ’ s dilemma Programming considering the topology is difficult unlike 2-D,3-D mesh/torus Programming for random communication network cannot make the use of locality of communication. 2-D/3-D mesh/torus Killer applications fit to the topology Partial differential equation, Image processing,… Simple mapping stratedies Frequent communicating processes should be Assigned to neighboring nodes

k - ary n - cube Generalized mesh/torus K-ary n digits number is assigned into each node For each dimension (digit), links are provided to nodes whose number are the same except the dimension in order. Rap-around links ( n -1→ 0 ) form a torus, otherwise mesh. “high-n” networks are used in recent supercomputers  Tofu in K uses 6-torus  Bluegene Q uses 5-torus

k-ary n-cube 0 1 2 3-ary 1-cube 000 111 222 3-ary 2-cube 0 1 2 0 1 2

0 1 2 000 111 2220 1 2 0 1 2 k-ary n-cube 3-ary 1-cube 3-ary 2-cube 0 1 2 000 111 2220 1 2 0 1 2 0 1 2 000 111 2220 1 2 0 1 2 0 0 0 00 0 00 0 1 111 1 1 1 11 1 2 222 2 2 3- ary 3- cube

3 -ary 4-cube 0*** 1*** 2***

0****1**** 2**** 3 -ary 5-cube degree: 2*n Diameter: (k-1)*n

6-dimensional Torus Tofu

Properties of k-ary n-cube A class of networks which has Linear, Ring 2- D/3-D mesh/torus and Hypercube ( binary n-cube ) as its member. Small d=2n but large D ( O(k )) Large number of neighboring links k-ary n-cube has been a main stream of NORA networks. Recently, small-n large-k networks are trendy. 1/n

Rise and fall of the members k n hypercube machines 1980’s 2D/3D Mesh/Torus 90’s-2000’s 5D/6D Mesh/Torus 2010’s HW router Wormhole, VC Bandwidth requirement Optical links, Increasing size Low-latency requirement

Quiz Calculate Diameter (D) and degree (d) of the 6 - ary 4-cube (mesh-type).

Glossary 1 Diameter: 直径 degree: 次数 Uniformity: 均一性 Expandability: 拡張性 Embeddability: 埋め込み能力 Bisection bandwidth:2 分割間転送量 Torus: 両端が接続されたネットワークで、特にメッ シュに対するものを指す。複数形は Tori なので注意 n -ary k-cube: n 進kキューブ 2 進キューブのこ とを特にハイパーキューブと呼ぶ

Advanced direct networks Shuffle based networks  De Bruijn, Kautz, Pradhan Extended mesh/torus  Midimew, RDT Star Graph Hierarchical networks  CCC, Hypernet Circular networks  Circular Omega 、 MDCE Network inside the chip (Network-on-Chip)  Spidergon, Mesh of Tree, Fat-H Tree  Some of them might be classified into indirect networks

De Bruijn network

Routings for De Bruijn Destination Routing (001→101)

B(k , n).. K-ary n-digits k-1

Characteristics of De Bruijn Benefits  d=2k 、 D=n=logN  When k=2, d=4 、 D=log N, that is, d of 2- dimensional mesh but D of hypercube. Problems  Optimal routing is difficult (not established yet).  Destination routing cannot make a best use of communication locality.  No killer applications.  Self loop and duplicated links

Kautz network The same number should not be at the neighboring digit

Circular networks Circular Omega  Advantageous for one-way communication  Used in data-flow machine EM-4 MDCE(CCCB)  Hierarchical structure of Circular Omega ( Banyan )  Used in massively parallel machine RWC-1

Circular Omega network

Cube Connected Circular Banyan Circular Banyan 3-Dimensional Proposed for RWC-1

Star graph ABCD BACD BCDA CBAD CDAB DCAB CADB DACB ADCB DBCA BACD CABD DCBA BDCA CDBA BDAC ADBC DABC BADC ABDC DBAC ACBD CBDA ACDB Connection n! nodes

Routing on Star graph ABCD BACD BCDA CBAD CDAB DCAB CADB DACB ADCB DBCA BACD CABD DCBA BDCA CDBA BDAC ADBC DABC BADC ABDC DBAC ACBD CBDA ACDB ABCD → DABC 3(n-1)/2 If A is top, change with arbitrary symbol, else, change with the symbol of destination node

Hierarchical network CCC(Cube Connected Cycles)  hypercube+ loop Hypernet  Compete connection + hypercube Well combined, weak points of original networks are vanished. Complicated routing, gap between hierarchies

CCC(Cube Connected Cycles)

Hyper Net a b c d e f g c b e di j f k g la h m n h p o Other links are used for further upper hierarchy

Extended mesh/torus Including mesh/torus structure Extended links for performance enhancement  Reconfigurable Mesh  Midimew  RDT

RDT(Recursive Diagonal Torus)

Multicasting on the RDT

Topology for NoC: (1) routercore Spidergon  Ring + diagonal links  Node degree 3; [Bononi, DATE’06] [Coppola, ISSOC’04] Spidergon (2-D layout)

Topology for NoC: (2) Mesh-of-TreeWK-recursive (4,2) router 計算コア WK-recursive (d,k)  hierarchical network Mesh-of-Tree  Mesh + Tree [Vecchia, FCGS’88] [Leighton, Math System theory’84] [Rahmati, ICCD’06]

router, Core ( ※ ) routers for more than rank-2 are omitted Each core connects to Red tree and Black tree Torus is formed Fat H-Tree : A network topology for NoCs

Glossary 2 De Bruijin: 人の名前でドブロイアンと読むの が本来の読み方だが英語圏の人はこれをデブ ルージンと読むので注意(最初全然わかんな かった)

Summary Recently, practical new topologies are not proposed. A lot of “made-in-Japan” networks Asymmetric indirect networks will be widely used.

Exercise Compute diameter of CCC with 16 cycles each of which has 4 nodes. Hint: How is the method to move between cycles efficiently?