© 2006 Cisco Systems, Inc. All rights reserved. ICND v2.3—1-1 Configuring Catalyst Switch Operations Introducing Spanning Tree Protocol.

Slides:



Advertisements
Similar presentations
© 2006 Cisco Systems, Inc. All rights reserved. ICND v2.3—2-1 Extending Switched Networks with Virtual LANs Introducing VLAN Operations.
Advertisements

© 2008 Cisco Systems, Inc. All rights reserved.Cisco ConfidentialPresentation_ID 1 Chapter 2: LAN Redundancy Scaling Networks.
Switching & Operations. Address learning Forward/filter decision Loop avoidance Three Switch Functions.
© 2006 Cisco Systems, Inc. All rights reserved.Cisco PublicITE I Chapter 6 1 Implement VTP LAN Switching and Wireless – Chapter 4.
1 CCNA 3 v3.1 Module 7. 2 CCNA 3 Module 7 Spanning Tree Protocol (STP)
Spanning Tree Protocol STP STP A broadcast storm occurs when there are so many broadcast frames caught in a Layer 2 loop that all available.
© 2009 Cisco Systems, Inc. All rights reserved. SWITCH v1.0—3-1 Implementing Spanning Tree Spanning Tree Protocol Enhancements.
Sybex CCNA Chapter 8: Layer-2 Switching Instructor & Todd Lammle.
© 2002, Cisco Systems, Inc. All rights reserved..
Spanning Tree Protocol
LOGO Local Area Network (LAN) Layer 2 Switching and Virtual LANs (VLANs) Local Area Network (LAN) Layer 2 Switching and Virtual LANs (VLANs) Chapter 6.
Layer 2 Switch  Layer 2 Switching is hardware based.  Uses the host's Media Access Control (MAC) address.  Uses Application Specific Integrated Circuits.
Layer 2 Switching. Overview Introduction Spanning Tree Protocol Spanning Tree Terms Spanning Tree Operations LAN Switch Types Configuring Switches.
© 2008 Cisco Systems, Inc. All rights reserved.Cisco ConfidentialPresentation_ID 1 Chapter 2: LAN Redundancy Scaling Networks.
© 2006 Cisco Systems, Inc. All rights reserved. ICND v2.3—1-1 Configuring Catalyst Switch Operations Introducing Basic Layer 2 Switching and Bridging Functions.
STP Part II PVST (Per Vlan Spanning Tree): A Vlan field is added to the BPDU header along with Priority & Mac. Priority is 32768, Mac Address is MAC or.
© 2008 Cisco Systems, Inc. All rights reserved.Cisco ConfidentialPresentation_ID 1 Chapter 2: LAN Redundancy Scaling Networks.
1 © 2004, Cisco Systems, Inc. All rights reserved. CCNA 3 v3.1 Module 7 Spanning Tree Protocol.
© 2008 Cisco Systems, Inc. All rights reserved.Cisco ConfidentialPresentation_ID 1 Lecture 12: LAN Redundancy Switched Networks Assistant Professor Pongpisit.
1 © 2003, Cisco Systems, Inc. All rights reserved. CCNA 3 v3.0 Module 7 Spanning-Tree Protocol Cisco Networking Academy.
© 2006 Cisco Systems, Inc. All rights reserved.Cisco PublicITE I Chapter 6 1 Implement Spanning Tree Protocols LAN Switching and Wireless – Chapter 5.
© 2006 Cisco Systems, Inc. All rights reserved.Cisco PublicITE I Chapter 6 1 Implement Spanning Tree Protocols LAN Switching and Wireless – Chapter 5.
Saeed Darvish Pazoki – MCSE, CCNA Abstracted From: Cisco Press – ICND 2 – Chapter 2 Spanning tree Protocol 1.
© 2006 Cisco Systems, Inc. All rights reserved.Cisco Public 1 Version 4.0 Implement Spanning Tree Protocols LAN Switching and Wireless – Chapter 5.
© 2006 Cisco Systems, Inc. All rights reserved.Cisco PublicITE I Chapter 6 1 Implement Spanning Tree Protocols LAN Switching and Wireless – Chapter 5 Part.
Cisco 3 - Switch Perrine. J Page 110/3/2015 Chapter 7 How does STP provide a loop-free network? 1.By placing all ports in the blocking state 2.By placing.
Sybex CCNA Chapter 8: Layer-2 Switching Instructor & Todd Lammle.
Instructor & Todd Lammle
Spanning Tree Protocol Cisco Networking Academy Program © Cisco Systems, Inc Spanning Tree Protocol.
© 2006 Cisco Systems, Inc. All rights reserved.Cisco PublicITE I Chapter 6 1 LAN Switching and Wireless Implement Spanning Tree Protocols (STP) Chapter.
Steffen/Stettler, , 4-SpanningTree.pptx 1 Computernetze 1 (CN1) 4 Spanning Tree Protokoll 802.1D-2004 Prof. Dr. Andreas Steffen Institute for.
Cisco 3 – Switching STP Perrine. J Page 110/19/2015 Chapter 8 Spanning Tree Protocol (STP) Having redundancy in a network is important, and allows the.
© 2002, Cisco Systems, Inc. All rights reserved..
Switching Basics and Intermediate Routing CCNA 3 Chapter 7.
LOGO Local Area Network (LAN) Layer 2 Switching and Virtual LANs (VLANs) Local Area Network (LAN) Layer 2 Switching and Virtual LANs (VLANs) Chapter 6.
Configuring Cisco Switches Chapter 13 powered by DJ 1.
© Wiley Inc All Rights Reserved. CCNA: Cisco Certified Network Associate Study Guide CHAPTER 7: Layer 2 Switching.
1 © 2003, Cisco Systems, Inc. All rights reserved. CCNA 3 v3.0 Module 7 Spanning Tree Protocol.
Instructor & Todd Lammle
Spanning Tree V1.2 Slide 1 of 1 Purpose:
STP LAN Redundancy Introduction Network redundancy is a key to maintaining network reliability. Multiple physical links between devices provide redundant.
Switching Topic 6 Rapid spanning tree protocol. Agenda RSTP features – Port states – Port roles – BPDU format – Edge ports and link types – Proposals.
1 © 2003, Cisco Systems, Inc. All rights reserved. CCNA 3 v3.0 Module 7 Spanning Tree Protocol.
1 Version 3.0 Module 7 Spanning Tree Protocol. 2 Version 3.0 Redundancy Redundancy in a network is needed in case there is loss of connectivity in one.
CCNP 3: Chapter 3 Implementing Spanning Tree. Overview Basics of implementing STP Election of Root Bridge and Backup Enhancing STP RSTP MSTP EtherChannels.
© 2006 Cisco Systems, Inc. All rights reserved.Cisco PublicITE I Chapter 6 1 Switching in an Enterprise Network Introducing Routing and Switching in the.
Topic 5 Spanning tree protocol
CO5023 LAN Redundancy.
© 2006 Cisco Systems, Inc. All rights reserved. ICND v2.3—1-1 Configuring Catalyst Switch Operations Identifying Problems That Occur in Redundant Switched.
Copyright 2003 CCNA 3 Chapter 8 Spanning Tree Protocol By Your Name.
Lecture3 Secured Network Design W.Lilakiatsakun.  Spanning Tree Protocol (STP)  Attack on Spanning Tree Protocol Topics.
© 2006 Cisco Systems, Inc. All rights reserved.Cisco PublicITE I Chapter 6 1 Implement Spanning Tree Protocols (STP) LAN Switching and Wireless – Chapter.
Chapter-5 STP. Introduction Examine a redundant design In a hierarchical design, redundancy is achieved at the distribution and core layers through additional.
Exploration 3 Chapter 5. Redundancy in Switched Networks Switches learn the MAC addresses of devices on their ports so that data can be properly forwarded.
Instructor Materials Chapter 3: STP
Implement Spanning Tree Protocols
Spanning Tree Protocol
Implement Spanning Tree Protocols
Instructor & Todd Lammle
Lecture#10: LAN Redundancy
Configuring Catalyst Switch Operations
Spanning Tree Protocol
Implement Spanning Tree Protocols
© 2002, Cisco Systems, Inc. All rights reserved.
Spanning Tree Protocol
NT2640 Unit 9 Activity 1 Handout
Spanning Tree Protocol (STP)
Cisco networking CNET-448
Presentation transcript:

© 2006 Cisco Systems, Inc. All rights reserved. ICND v2.3—1-1 Configuring Catalyst Switch Operations Introducing Spanning Tree Protocol

© 2006 Cisco Systems, Inc. All rights reserved. ICND v2.3—1-2 Outline Overview Spanning Tree Protocol Spanning-Tree Operation Root Bridge Selection Spanning-Tree Port States Spanning-Tree Path Costs Spanning-Tree Recalculation Rapid Spanning Tree Protocol Summary

© 2006 Cisco Systems, Inc. All rights reserved. ICND v2.3—1-3 Provides a loop-free redundant network topology by placing certain ports in the blocking state Spanning Tree Protocol

© 2006 Cisco Systems, Inc. All rights reserved. ICND v2.3—1-4 Spanning-Tree Operation One root bridge per broadcast domain One root port per nonroot bridge One designated port per segment Nondesignated ports are unused

© 2006 Cisco Systems, Inc. All rights reserved. ICND v2.3—1-5 BPDU (default = sent every two seconds) Root bridge = bridge with the lowest bridge ID Bridge ID = In this example, which switch has the lowest bridge ID? Spanning Tree Protocol Root Bridge Selection

© 2006 Cisco Systems, Inc. All rights reserved. ICND v2.3—1-6 Spanning tree transits each port through several different states: Spanning-Tree Port States

© 2006 Cisco Systems, Inc. All rights reserved. ICND v2.3—1-7 Spanning-Tree Port States (Cont.)

© 2006 Cisco Systems, Inc. All rights reserved. ICND v2.3—1-8 Spanning-Tree Operation

© 2006 Cisco Systems, Inc. All rights reserved. ICND v2.3—1-9 Spanning-Tree Path Cost

© 2006 Cisco Systems, Inc. All rights reserved. ICND v2.3—1-10 Spanning-Tree Recalculation

© 2006 Cisco Systems, Inc. All rights reserved. ICND v2.3—1-11 Spanning-Tree Convergence Convergence occurs when all the switch and bridge ports have transitioned to either the forwarding or the blocking state. When the network topology changes, switches and bridges must recompute STP, which disrupts user traffic.

© 2006 Cisco Systems, Inc. All rights reserved. ICND v2.3—1-12 Rapid Spanning-Tree Protocol

© 2006 Cisco Systems, Inc. All rights reserved. ICND v2.3—1-13 Rapid Transition to Forwarding

© 2006 Cisco Systems, Inc. All rights reserved. ICND v2.3—1-14 Summary STP is a bridge-to-bridge protocol used to maintain a loop-free network. To maintain a loop-free network topology, STP establishes a root bridge, a root port, and designated ports. With STP, the root bridge has the lowest BID, which is made up of the bridge priority and the MAC address. When STP is enabled, every bridge in the network goes through the blocking state and the transitory states of listening and learning at power up. If properly configured, the ports then stabilize to the forwarding or blocking state. If the network topology changes, STP maintains connectivity by transitioning some blocked ports to the forwarding state. RSTP significantly speeds the recalculation of the spanning tree when the network topology changes.

© 2006 Cisco Systems, Inc. All rights reserved. ICND v2.3—1-15