48.8mW Multi-cell InP HBT Amplifier with on-wafer power combining at 220GHz Thomas Reed, Mark Rodwell University of California, Santa Barbara Zach Griffith,

Slides:



Advertisements
Similar presentations
B. BOUDJELIDA 2 nd SKADS Workshop October 2007 Large gate periphery InGaAs/InAlAs pHEMT: Measurement and Modelling for LNA fabrication B. Boudjelida,
Advertisements

An NLTL based Integrated Circuit for a GHz VNA System
High efficiency Power amplifier design for mm-Wave
Design of a Low-Noise 24 GHz Receiver Using MMICs Eric Tollefson, Rose-Hulman Institute of Technology Advisor: Dr. L. Wilson Pearson.
Development of THz Transistors & ( GHz) Sub-mm-Wave ICs , fax The 11th International Symposium on.
CSICS 2013 Monterey, California A DC-100 GHz Bandwidth and 20.5 dB Gain Limiting Amplifier in 0.25μm InP DHBT Technology Saeid Daneshgar, Prof. Mark Rodwell.
A Zero-IF 60GHz Transceiver in 65nm CMOS with > 3.5Gb/s Links
1 InGaAs/InP DHBTs demonstrating simultaneous f t / f max ~ 460/850 GHz in a refractory emitter process Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
Y. Wei, M. Urteaga, Z. Griffith, D. Scott, S. Xie, V. Paidi, N. Parthasarathy, M. Rodwell. Department of Electrical and Computer Engineering, University.
Device Research Conference 2011
Characteristics of Submicron HBTs in the GHz Band M. Urteaga, S. Krishnan, D. Scott, T. Mathew, Y. Wei, M. Dahlstrom, S. Lee, M. Rodwell. Department.
Mid-Semester Design Review High Frequency Radio with BPSK Modulation.
40 GHz MMIC Power Amplifier in InP DHBT Technology Y.Wei, S.Krishnan, M.Urteaga, Z.Griffith, D.Scott, V.Paidi, N.Parthasarathy, M.Rodwell Department of.
Slide 1 V. Paidi Department of Electrical and Computer Engineering, University of California, Santa Barbara High Frequency Power Amplifiers.
2013 IEEE Compound Semiconductor IC Symposium, October 13-15, Monterey, C 30% PAE W-band InP Power Amplifiers using Sub-quarter-wavelength Baluns for Series-connected.
60-GHz PA and LNA in 90-nm RF-CMOS
Chart 1 A 3-Stage Shunt-Feedback Op-Amp having 19.2dB Gain, 54.1dBm OIP3 (2GHz), and 252 OIP3/P DC Ratio Zach Griffith, M. Urteaga, R. Pierson, P. Rowell,
ECE1352F University of Toronto 1 60 GHz Radio Circuit Blocks 60 GHz Radio Circuit Blocks Analog Integrated Circuit Design ECE1352F Theodoros Chalvatzis.
Sub-mm-Wave Technologies: Systems, ICs, THz Transistors Asia-Pacific Microwave Conference, November 8th, Seoul Mark.
A 77-79GHz Doppler Radar Transceiver in Silicon
Microwave Engineering, 3rd Edition by David M. Pozar
Seoul National University CMOS for Power Device CMOS for Power Device 전파공학 연구실 노 영 우 Microwave Device Term Project.
Study of 60GHz Wireless Network & Circuit Ahn Yong-joon.
New MMIC-based Millimeter-wave Power Source Chau-Ching Chiong, Ping-Chen Huang, Yuh-Jing Huang, Ming-Tang Chen (ASIAA), Shou-Hsien Weng, Ho-Yeh Chang (NCUEE),
Single-stage G-band HBT Amplifier with 6.3 dB Gain at 175 GHz M. Urteaga, D. Scott, T. Mathew, S. Krishnan, Y. Wei, M. Rodwell. Department of Electrical.
87 GHz Static Frequency Divider in an InP-based Mesa DHBT Technology S. Krishnan, Z. Griffith, M. Urteaga, Y. Wei, D. Scott, M. Dahlstrom, N. Parthasarathy.
Doc.: IEEE /0402r2 Submission May 2012 Haiming Wang, Xiaoming PengSlide 1 Date: Authors: Overview of CWPAN SG5 QLINKPAN.
GHZ Wireless: Transistors, ICs, and System Design Plenary, 2014 German Microwave Conference, March, Aachen.
Frequency Limits of Bipolar Integrated Circuits , fax Mark Rodwell University of California, Santa Barbara.
Student Paper Finalist TU3B-1
High-Speed Track-and-Hold Circuit Design October 17th, 2012 Saeid Daneshgar, Prof. Mark Rodwell (UCSB) Zach Griffith (Teledyne)
Presenter: Chun-Han Hou ( 侯 鈞 瀚)
Rodwell et al, UCSB: Keynote talk, 2000 IEEE Bipolar/BICMOS Circuits and Technology Meeting, Minneapolis, September Submicron Scaling of III-V HBTs for.
W-band InP/InGaAs/InP DHBT MMIC Power Amplifiers Yun Wei, Sangmin Lee, Sundararajan Krishnan, Mattias Dahlström, Miguel Urteaga, Mark Rodwell Department.
Millimeter-wave load-pull techniques
V. Paidi, Z. Griffith, Y. Wei, M. Dahlstrom,
A High-Gain, Low-Noise, +6dBm PA in 90nm CMOS for 60-GHz Radio
Chart 1 A 204.8GHz Static Divide-by-8 Frequency Divider in 250nm InP HBT Zach Griffith, Miguel Urteaga, Richard Pierson, Petra Rowell, Mark Rodwell*, and.
Phan Tuan Anh Dec Reconfigurable Multiband Multimode LNA for LTE/GSM, WiMAX, and IEEE a/b/g/n 17 th IEEE ICECS 2010, Athens, Greece.
THz Transistors, sub-mm-wave ICs, mm-wave Systems , fax 20th Annual Workshop on Interconnections within High.
III-V HBT device physics: what to include in future compact models , fax Mark Rodwell University of California,
A NEW METHOD TO STABILIZE HIGH FREQUENCY HIGH GAIN CMOS LNA RF Communications Systems-on-chip Primavera 2007 Pierpaolo Passarelli.
RFIC – Atlanta June 15-17, 2008 RTU1A-5 A 25 GHz 3.3 dB NF Low Noise Amplifier based upon Slow Wave Transmission Lines and the 0.18 μm CMOS Technology.
MMIC design activities at ASIAA Chau-Ching Chiong, Ping-Chen Huang, Yuh-Jing Huang, Ming-Tang Chen (ASIAA), Ho-Yeh Chang (NCUEE), Ping-Cheng Huang, Che-Chung.
Sanae Boulay, Limelette, Nov 05 th 20091/20 S. Boulay, B. Boudjelida, A. Sharzad, N. Ahmad, M. Missous Novel Ultra Low Noise Amplifiers based on InGaAs/InAlAs.
Multi-stage G-band ( GHz) InP HBT Amplifiers
RFIC – Atlanta June 15-17, 2008 RMO1C-3 An ultra low power LNA with 15dB gain and 4.4db NF in 90nm CMOS process for 60 GHz phase array radio Emanuel Cohen.
Device Research Conference, 2005 Zach Griffith and Mark Rodwell Department of Electrical and Computer Engineering University of California, Santa Barbara,
High speed (207 GHz f  ), Low Thermal Resistance, High Current Density Metamorphic InP/InGaAs/InP DHBTs grown on a GaAs Substrate Y.M. Kim, M. Dahlstrǒm,
Urteaga et al, 2001 Device Research Conference, June, Notre Dame, Illinois Characteristics of Submicron HBTs in the GHz Band M. Urteaga, S. Krishnan,
Amplifiers Amplifier Parameters Gain = Po/Pi in dB = 10 log (Po/Pi)
Rakshith Venkatesh 14/27/2009. What is an RF Low Noise Amplifier? The low-noise amplifier (LNA) is a special type of amplifier used in the receiver side.
Indium Phosphide and Related Material Conference 2006 Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University.
Current Density Limits in InP DHBTs: Collector Current Spreading and Effective Electron Velocity Mattias Dahlström 1 and Mark J.W. Rodwell Department of.
THz Bipolar Transistor Circuits: Technical Feasibility, Technology Development, Integrated Circuit Results ,
185 GHz Monolithic Amplifier in InGaAs/InAlAs Transferred-Substrate HBT Technology M. Urteaga, D. Scott, T. Mathew, S. Krishnan, Y. Wei, M. Rodwell. Department.
Device Research Conference 2007 Erik Lind, Adam M. Crook, Zach Griffith, and Mark J.W. Rodwell Department of Electrical and Computer Engineering University.
Indium Phosphide and Related Materials
VI. HIGH-EFFICIENCY SWITCHMODE HYBRID AND MMIC POWER AMPLIFIERS:
Ultra Wideband DHBTs using a Graded Carbon-Doped InGaAs Base Mattias Dahlström, Miguel Urteaga,Sundararajan Krishnan, Navin Parthasarathy, Mark Rodwell.
Prospects for Multi-THz III-V Transistors
Ultra-low Power Components
Lab2: Smith Chart And Matching
Communication 40 GHz Anurag Nigam.
A High-Dynamic-Range W-band
Lets Design an LNA! Anurag Nigam.
Ultra Wideband Power Amplifiers in 130 nm InP HBT Technology
High-linearity W-band Amplifiers in 130 nm InP HBT Technology
A 3.1–10.6 GHz Ultra-Wideband CMOS Low Noise Amplifier With Current-Reused Technique Microwave and Wireless Components Letters, IEEE Volume 17,  Issue.
High frequency signal source with characteristics suitable for THz Applications and Measurements(VNA) Department of Communication Engineering research.
Presentation transcript:

48.8mW Multi-cell InP HBT Amplifier with on-wafer power combining at 220GHz Thomas Reed, Mark Rodwell University of California, Santa Barbara Zach Griffith, Petra Rowell, Miguel Urteaga, Mark Field, Jon Hacker Teledyne Scientific & Imaging, LLC

220 GHz InP HBT Power Amplifier 10/19/2011Thomas Reed UCSB CSICS M.42  mm-Wave Power in Communications and Imaging  250nm Indium Phosphide HBT Technology  MMIC Power Amplifier Cells & Combiners  Multi-cell Power Amplifier Results

mm-Wave Power in Communications and Imaging 10/19/2011Thomas Reed UCSB CSICS M.43

Systems at High Frequency 10/19/2011Thomas Reed UCSB CSICS M.44  High Bandwidth Communications  P Rec decreases as  High Resolution Imaging Systems  P Rec decreases as  Tx/Rx Challenges:  Atmospheric Attenuation  ~ GHz  +3-30dB/km w/ Fog/Rain  High Noise Figure  ~10 dB(InP) Wiltse, 1997 IEEE APS- Symposium, sea level 4 km 9 km 220 GHz

mm-Wave Comm. requires large power 10/19/2011Thomas Reed UCSB CSICS M.45  Minimum Received Power  Transmission Losses 300m  Minimum Transmitted Power 29.2 dBm = 0.83 W PA LNA...

mm-Wave PA Results 10/19/2011Thomas Reed UCSB CSICS M.46

250nm InP HBT Process 10/19/2011Thomas Reed UCSB CSICS M.47

Device High Performance Operating Area 10/19/2011Thomas Reed UCSB CSICS M.48  J max = 12mA/um 2  V be,on = 0.85V  VB cbo = 4.5V  P max = 15mW/um 2  V ce,hf = 3V high bandwidth Data courtesy Zach Griffith Quiescient Bias Point/ Class A load line

ƒ t,ƒ max varies with DC Bias 10/19/2011Thomas Reed UCSB CSICS M.49  ft/fmax peak = 400/700 GHz  ft/fmax = 350/590 GHz  Highly degraded bandwidth above Vce=3V

Multi-finger HBT Modeling 10/19/2011Thomas Reed UCSB CSICS M.410  Device Modeling  Hole in Ground Plane  Multi-finger HBT performance verified  4-finger HBT  A emitter = 4x 0.25x6 μ m 2  ft/fmax = 333/530GHz  1-finger HBT  ft/fmax = 350/590GHz Emitter Base Collector Ground Plane Another 4-finger cell

Non-Inverted Microstrip Wiring 10/19/2011Thomas Reed UCSB CSICS M.411  Local GND  Wider 50 Ω than inv. microstrip  Must Model Holes in GND plane  MIM Capacitors, Thin-Film Resistors Metal 1 Metal 2 Metal 3 Metal 4 MIM CAP 5µm 1µm ( ε r = 2.7) BCB GND BCB 50 Ω 15µm

MMIC Power Amplifier Cells & Combiners 10/19/2011Thomas Reed UCSB CSICS M.412

MMIC Power Amplifier Cell Design 10/19/2011Thomas Reed UCSB CSICS M.413 ΔIΔI ΔVΔV  Cascode Amplifier Topology  Gain, Input/Output Isolation,  Interconnects: ADS Momentum High Zo MIM

A 4-finger Amplifier Cell 10/19/2011Thomas Reed UCSB CSICS M.414

A 4-finger Amplifier Cell 10/19/2011Thomas Reed UCSB CSICS M.415 λ/4 Chokes CE CB DC Supplies

A 4-finger Amplifier Cell 10/19/2011Thomas Reed UCSB CSICS M.416 DC Block Input Matching Output Tuning Bypass Cap

Combining for High MMIC Power 10/19/2011Thomas Reed UCSB CSICS M.417  Combine 4:1 and 2:1 for larger total power  Limits to combiners  Large IL at L ≥ λ g /4

2:1 Power Combiner 10/19/2011Thomas Reed UCSB CSICS M Cell Power Amplifier with 2:1 power combining. The die is 0.7x0.58 mm 2. Cell Combiner Measured 1.25dB insertion loss for Back-to-back Combiners √2 * Zo Zo L = λ /4

4:1 Power Combiner 10/19/2011Thomas Reed UCSB CSICS M cell InP HBT amplifier with 4-1 power combiners. The die is 0.7x0.65 mm 2. Cell Combiner  Reduced to Lumped L/C for design Measured 1.3 dB Insertion Loss for Back-to-back 4:1 power Combiners.

48.8 mW 4-finger Power Amplifiers 10/19/2011Thomas Reed UCSB CSICS M.420

MMIC Measurements and Data 10/19/2011Thomas Reed UCSB CSICS M.421  Small Signal Measurement  VNA with GHz frequency extender heads  SOLT calibration for circuits  Power Sweep Measurement  200 & 220 GHz frequency multiplier chains and sub-mm wave power meter  Insertion Loss Calibration VDI Source To Meter

2-Cell PA Results 10/19/2011Thomas Reed UCSB CSICS M.422 S 21 = GHz P out,max 208GHz ΔV = 2, 2.5, 3V

4-Cell PA Results 10/19/2011Thomas Reed UCSB CSICS M.423 S 21 = GHz P out ≈ GHz

8-Cell Power Amplifiers 10/19/2011Thomas Reed UCSB CSICS M.424 P out = 215 GHz S 21,max = 217 GHz 3dB Bandwidth GHz Measured P out limited by 220GHz source power.

Linear Power Density 10/19/2011Thomas Reed UCSB CSICS M.425  InP HBT process is a competitive high power-density technology.

Recapitulation 10/19/2011Thomas Reed UCSB CSICS M.426  Modular amplifier cells have been designed to have high gain and high output power.  4-cell amplifiers show 48.8 mW saturated output power at 220 GHz using InP HBTs.  8-cell amplifiers show 58 mW output power at 220 GHz but measurements were limited by source power.

THANK YOU! 10/19/2011Thomas Reed UCSB CSICS M.427  CSICS Technical Committee  Zach Griffith, Mark Rodwell, and Mark Field  UCSB Rodwell Group Members  DARPA MTO HiFive Program

Questions? 10/19/2011Thomas Reed UCSB CSICS M.428

Bonus Slides 10/19/2011Thomas Reed UCSB CSICS M.429

mm-Wave Power Amplifiers 10/19/2011Thomas Reed UCSB CSICS M.430  Current Power Amplifier Results Key Black – GaN Red – InP HEMT Green – My InP HBT Results Yellow – Other InP HBT Results FabAuthorPaperJournal/Conference RaytheonBrown, A.W-band GaN amplifier MMICsIMS 2011 UCSBReed, T.66.1 mW InP HBT Power Amplifier* Not Published Yet UCSBReed, T mW Multi-cell InP HBT Amplifier with on-wafer power combining at 220 GHzCSICS 2011 NGSTRadisic, V. A 50mW 220GHZ Power Amplifier ModuleIMS 2010 NGSTHuang, P.P. A 20mW G-band monolithic driver amplifier using 0.07-um InP HEMTIEEE MTT-S 2006 UCSBPaidi G-band ( GHz) and W-band (75-110GHz) InP DHBT medium power amplifiers IEEE Trans. Microwave Theory Tech Feb 2005 NGSTDeal, W.R. Development of Sub-Millimeter- Wave Power Amplifiers IEEE Trans. Microwave Theory Tech Dec 2007 NGSTChen, Y.C. A 95-GHz InP HEMT MMIC amplifier with 427-mW power output IEEE Microwave and Guided Wave Letters Nov 1998 UCSBReed, T. 3.0 mW Common Base Power Amplifier with 3 dB Small Signal Gain at 221 GHz in InP DHBT Technology Lester Eastman Conference 2010 NGSTMei, X.B. Sub-50nm InGaAs/InAlAs/InP HEMT for sub-millimeter wave power amplifier applicationsIPRM 2010 NGSTDeal, W.R. A balanced sub-millimeter wave power amplifierIMS Digest 2008

DC Blocking Capacitors 10/19/2011Thomas Reed UCSB CSICS M.431  Ground Plane hole  Large enough to represent a short at 220GHz.  Blocking Caps create a hole in the ground plane  Inductance (Think Slot Antenna) Port 1 Port 2 Ground Plane Collector Metal Ground Extension DC Block Cap Metal 1 Metal 2 MIM CAP GND Collector Metal Metal 2 Port 1Port 2

System Components at High Frequency 10/19/2011Thomas Reed UCSB CSICS M.432  High Frequency LNAs  94 GHz InP mHEMT: 3dB NF  (Mikko Karkkainen, et al. Coplanar 94 GHz Metamorphic HEMT Low Noise Amplifiers. CSICS 2006.)  GHz InP HBT: 5-12dB NF  (Samoska, L. Towards Terahertz MMIC Amplifiers: Present Status and Trends. MTT-S 2006.)  300 GHz InP HBT LNA: 11.2dB NF  (J. Hacker, et al. THz MMICs based on InP HBT Technology. IMS 2010.)  670 GHz InP HEMT: 13dB NF  (Deal, W.R., et al. Low Noise Amplification at 0.67 THz Using 30nm InP HEMTs. Microwave and Wireless Components Letters July 2011.)

Rain, Fog, & Humidy Reduce Range and Reliability rain heavy rain tropical deluge Olsen, Rogers, Hodge, IEEE Trans Antennas & Propagation Mar 1978 very heavy fog Liebe, Manabe, Hufford, IEEE Trans Antennas and Propagation, Dec Manabe, Yoshida,.1993 EEE Int. Conf. on Communications, rain 50 mm/hr: 20 dB/km, GHz 150 mm/hr : 50 dB/km, GHz Clouds, heavy fog: ~(25 dB/km)x(frequency/500 GHz) 90% Humidity: >30 dB/km above 300 GHz nondominant below 250 GHz (Rosker 2007 IEEE IMS) 10/19/201133Thomas Reed UCSB CSICS M.4

MMIC Measurements and Data 10/19/2011Thomas Reed UCSB CSICS M.434  “Load Pull” Station  Power Sweep using VDI 200 GHz and 220GHz Multiplier Chain  Calorimeter—Erickson sub- mm wave power meter  Calibration  Insertion Loss calibration with the reference plane at the probe tips  Waveguide flange to probe tip insertion loss ~1.7dB VDI Source To Meter Above Photo Courtesy Zach Griffith