Università di Salerno GL7 Distributed Adaptive Directory (DAD) F-Chord: Improved Uniform Routing on Chord Meeting Firb - Genova, 5-6 luglio 2004.

Slides:



Advertisements
Similar presentations
Salerno, 20/21/22 giugno Meeting WEBMINDS 2005 Degree-Optimal Deterministic Routing for P2P Systems Meeting WEBMINDS 2005 Salerno, 20/21/22 giugno Università
Advertisements

Scalable and Dynamic Quorum Systems Moni Naor & Udi Wieder The Weizmann Institute of Science.
1 Analyzing Kleinberg’s Small-world Model Chip Martel and Van Nguyen Computer Science Department; University of California at Davis.
P2P data retrieval DHT (Distributed Hash Tables) Partially based on Hellerstein’s presentation at VLDB2004.
Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan MIT and Berkeley presented by Daniel Figueiredo Chord: A Scalable Peer-to-peer.
Peer to Peer and Distributed Hash Tables
Evaluation of a Scalable P2P Lookup Protocol for Internet Applications
Pastry Peter Druschel, Rice University Antony Rowstron, Microsoft Research UK Some slides are borrowed from the original presentation by the authors.
Peter Druschel, Rice University Antony Rowstron, Microsoft Research UK
Scalable Content-Addressable Network Lintao Liu
Peer-to-Peer (P2P) Distributed Storage 1Dennis Kafura – CS5204 – Operating Systems.
CHORD – peer to peer lookup protocol Shankar Karthik Vaithianathan & Aravind Sivaraman University of Central Florida.
PDPTA03, Las Vegas, June S-Chord: Using Symmetry to Improve Lookup Efficiency in Chord Valentin Mesaros 1, Bruno Carton 2, and Peter Van Roy 1 1.
Chord: A scalable peer-to- peer lookup service for Internet applications Ion Stoica, Robert Morris, David Karger, M. Frans Kaashock, Hari Balakrishnan.
1 1 Chord: A scalable Peer-to-peer Lookup Service for Internet Applications Dariotaki Roula
Common approach 1. Define space: assign random ID (160-bit) to each node and key 2. Define a metric topology in this space,  that is, the space of keys.
C-Perfect Hashing Schemes for Arrays, with Applications to Parallel Memories G. Cordasco 1, A. Negro 1, A. L. Rosenberg 2 and V. Scarano 1 1 Dipartimento.
Peer to Peer File Sharing Huseyin Ozgur TAN. What is Peer-to-Peer?  Every node is designed to(but may not by user choice) provide some service that helps.
Topics in Reliable Distributed Systems Lecture 2, Fall Dr. Idit Keidar.
Spring 2003CS 4611 Peer-to-Peer Networks Outline Survey Self-organizing overlay network File system on top of P2P network Contributions from Peter Druschel.
Distributed Lookup Systems
University of Oregon Slides from Gotz and Wehrle + Chord paper
Idit Keidar, Principles of Reliable Distributed Systems, Technion EE, Spring Principles of Reliable Distributed Systems Lecture 2: Peer-to-Peer.
Chord-over-Chord Overlay Sudhindra Rao Ph.D Qualifier Exam Department of ECECS.
The Small World Phenomenon: An Algorithmic Perspective by Anton Karatoun.
Topics in Reliable Distributed Systems Fall Dr. Idit Keidar.
1 CS 194: Distributed Systems Distributed Hash Tables Scott Shenker and Ion Stoica Computer Science Division Department of Electrical Engineering and Computer.
Chord: A Scalable Peer-to-peer Lookup Protocol for Internet Applications 吳俊興 國立高雄大學 資訊工程學系 Spring 2006 EEF582 – Internet Applications and Services 網路應用與服務.
Wide-area cooperative storage with CFS
1 Peer-to-Peer Networks Outline Survey Self-organizing overlay network File system on top of P2P network Contributions from Peter Druschel.
1 Koorde: A Simple Degree Optimal DHT Frans Kaashoek, David Karger MIT Brought to you by the IRIS project.
Content Overlays (Nick Feamster). 2 Content Overlays Distributed content storage and retrieval Two primary approaches: –Structured overlay –Unstructured.
Using the Small-World Model to Improve Freenet Performance Hui Zhang Ashish Goel Ramesh Govindan USC.
Chord: A Scalable Peer-to-peer Lookup Protocol for Internet Applications Xiaozhou Li COS 461: Computer Networks (precept 04/06/12) Princeton University.
Optimisation des DHT à partir des propriétés physiques, logiques et sociologiques des clients Pierre Fraigniaud CNRS LRI, Univ. Paris-Sud
Hot Topics in Peer-to-Peer Computing (HOT-P2P 2004) Volendam 08 October 2004 Non-uniform deterministic routing on F-Chord(  ) Gennaro Cordasco, Luisa.
1 Distributed Hash Tables (DHTs) Lars Jørgen Lillehovde Jo Grimstad Bang Distributed Hash Tables (DHTs)
Content Addressable Network CAN. The CAN is essentially a distributed Internet-scale hash table that maps file names to their location in the network.
A Scalable Content-Addressable Network (CAN) Seminar “Peer-to-peer Information Systems” Speaker Vladimir Eske Advisor Dr. Ralf Schenkel November 2003.
Gennaro Cordasco - How Much Independent Should Individual Contacts be to Form a Small-World? - 19/12/2006 How Much Independent Should Individual Contacts.
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications.
SIGCOMM 2001 Lecture slides by Dr. Yingwu Zhu Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications.
Dynamic Networks for Peer-to-Peer Systems Pierre Fraigniaud CNRS LRI, Univ. Paris Sud Joint work with Philippe Gauron.
Lecture 12 Distributed Hash Tables CPE 401/601 Computer Network Systems slides are modified from Jennifer Rexford.
1 Distributed Hash Table CS780-3 Lecture Notes In courtesy of Heng Yin.
Chord Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber Google,
Idit Keidar, Principles of Reliable Distributed Systems, Technion EE, Spring Principles of Reliable Distributed Systems Lecture 2: Distributed Hash.
Gennaro Cordasco - Degree–Optimal Routing for P2P Systems - 28/10/2006 Degree–Optimal Routing for P2P Systems Giovanni Chiola, Gennaro Cordasco, Luisa.
1. Efficient Peer-to-Peer Lookup Based on a Distributed Trie 2. Complex Queries in DHT-based Peer-to-Peer Networks Lintao Liu 5/21/2002.
Dynamic Networks for Peer-to-Peer Systems Pierre Fraigniaud CNRS Lab. de Recherche en Informatique (LRI) Univ. Paris-Sud, Orsay Joint work with Philippe.
Data Indexing in Peer- to-Peer DHT Networks Garces-Erice, P.A.Felber, E.W.Biersack, G.Urvoy-Keller, K.W.Ross ICDCS 2004.
LOOKING UP DATA IN P2P SYSTEMS Hari Balakrishnan M. Frans Kaashoek David Karger Robert Morris Ion Stoica MIT LCS.
Two Peer-to-Peer Networking Approaches Ken Calvert Net Seminar, 23 October 2001 Note: Many slides “borrowed” from S. Ratnasamy’s Qualifying Exam talk.
A P2P Distributed Adaptive Directory Gennaro Cordasco, Vittorio Scarano and Cristiano Vitolo ISIS-Lab – Dipartimento di Informatica ed Applicazioni ”R.M.
CS694 - DHT1 Distributed Hash Table Systems Hui Zhang University of Southern California.
Incrementally Improving Lookup Latency in Distributed Hash Table Systems Hui Zhang 1, Ashish Goel 2, Ramesh Govindan 1 1 University of Southern California.
Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications * CS587x Lecture Department of Computer Science Iowa State University *I. Stoica,
CS Spring 2010 CS 414 – Multimedia Systems Design Lecture 24 – Introduction to Peer-to-Peer (P2P) Systems Klara Nahrstedt (presented by Long Vu)
Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M
(slides by Nick Feamster)
Improving and Generalizing Chord
S-Chord: Using Symmetry to Improve Lookup Efficiency in Chord
Know thy Neighbor’s Neighbor Better Routing for Skip Graphs and Small Worlds Moni Naor Udi Wieder.
SKIP GRAPHS James Aspnes Gauri Shah SODA 2003.
EE 122: Peer-to-Peer (P2P) Networks
DHT Routing Geometries and Chord
A Scalable content-addressable network
Koorde: A simple degree optimal DHT
MIT LCS Proceedings of the 2001 ACM SIGCOMM Conference
A Scalable Peer-to-peer Lookup Service for Internet Applications
Presentation transcript:

Università di Salerno GL7 Distributed Adaptive Directory (DAD) F-Chord: Improved Uniform Routing on Chord Meeting Firb - Genova, 5-6 luglio 2004

Distributed Adaptive Directory (DAD) Sistema per il bookmark cooperativo Ambiente peer-to-peer permette di condividere i bookmark con gli utenti connessi Sistema adattivo DAD offre suggerimenti sulla base dei bookmark inseriti Sistema dinamico gli utenti possono fornire feedback sui bookmark di altri utenti modificando il peso di bookmark ed utenti Meeting Firb - Genova, 5-6 luglio 2004

Distributed Adaptive Directory (DAD) Meeting Firb - Genova, 5-6 luglio 2004 DAD CHILD Adaptivity Bookmark sharing Chord Bootstrap Authentication Kleinberg User Scores DHT dump MOM Graphical user interface Our extension to Kleinberg

Distributed Adaptive Directory (DAD) Meeting Firb - Genova, 5-6 luglio 2004 Suggeriti dal sistema Inseriti (o copiati) dallutente Trovati nel sistema (su un altro utente) Numero di occorrenze

F-Chord: Improved Uniform Routing on Chord Gennaro Cordasco, Luisa Gargano, Mikael Hammar, Alberto Negro, and Vittorio Scarano Summary Motivation to our work Peer to Peer Scalability Distributed Hash table F-Chord family The Idea Definition Our result Conclusions and Open Questions Meeting Firb - Genova, 5-6 luglio 2004

Motivation Peer to Peer Systems (P2P) File sharing system; File storage system; Distributed file system; Redundant storage; Availability; Performance; Permanence; Anonymity; Scalability Meeting Firb - Genova, 5-6 luglio 2004

Distributed Hash Table (DHT) Distributed version of a hash table data structure Stores (key, value) pairs The key is like a filename The value can be file contents Goal: Efficiently insert/lookup/delete (key, value) pairs Each peer stores a subset of (key, value) pairs in the system Core operation: Find node responsible for a key Map key to node Efficiently route insert/lookup/delete request to this node Meeting Firb - Genova, 5-6 luglio 2004

DHT performance metrics Three performance metric: Routing table size (degree) Storage cost Measure the cost of self-stabilization for adapting to node joins/leaves Diameter and Average path length Time cost Meeting Firb - Genova, 5-6 luglio 2004

Uniform Routing Algorithm We consider a ring of N identifiers labeled from 0 to N-1 A routing algorithm is uniform if for each identifier x, x is connected to y iff x+z is connected to y+z (i.e. : all the connection are symmetric). Advantages Easy to implement Greedy algorithm is optimal No node congestion Drawback Less powerful (De Bruijn Graph and Neighbor of Neighbor Greedy routing are more powerful) Meeting Firb - Genova, 5-6 luglio 2004

Asymptotic tradeoff curve Routing table size 1 1 N -1 O(log N) Chord et al. Ring O(log N) Diameter Uniform Routing algorithm Non-Uniform Routing algorithm Meeting Firb - Genova, 5-6 luglio 2004 Totally connected graph

An Example: Chord Chord uses a one-dimensional circular key space (ring) of N=2 b identifiers The node responsible for the key is the node whose identifier most closely follows the key Chord maintains two sets of neighbors: A successor list of k nodes that immediately follows it in the key space A finger list of b = log N nodes spaced exponentially around the key space Routing consists in forwarding to the node closest, but not past, the key Performance: Diameter: log N (O(log n) whp) where n denote the number of nodes present in the network Routing table size: log N (O(log n) whp) Average path length: ½ log N Routing correctness Routing efficiency Meeting Firb - Genova, 5-6 luglio 2004

An Example: Chord Meeting Firb - Genova, 5-6 luglio 2004 IDResp. 8+1= = = = = =1214 m=6 indiceNod o Successors Predecessor Nodo 1

Previous Results The network diameter lower bound is when the routing table size is no more than Xu, Kumar, Yu (2003): The diameter lower bound for the network is if the degree is when we use an uniform routing algorithm. In particular, the diameter lower bound for the network is if the degree is when we use an uniform routing algorithm; Show an uniform routing algorithm with degree and diameter equals to Average path length is 0,6135 log N Meeting Firb - Genova, 5-6 luglio 2004

The Idea Meeting Firb - Genova, 5-6 luglio x=0 x=1/21-x-x 2 =0 x=1/ x x2x2 S 1 =1 S i =(1/2) (i-1) … S d1/n d log 2 n S 1 =1 (1/ ) 2(i-1) S i (1/ ) (i-1) … S d1/n d log n Chord x

The Idea(2) Meeting Firb - Genova, 5-6 luglio 2004 We can use only the jumps x i s.t. i 1 mod 2 (x, x 3, x 5, x 7, …) 1 x2x2 x xx3x3 x3x3 x2x2 x2x2 x x2x2 x3x3 x2x2 d = (1/2)log n = (1/2)log n

The Idea(3) We construct an uniform routing algorithm using a novel number-theoretical technique, in particular our scheme is based on the Fibonacci number system. Fib(i) denote the i-th Fibonacci number. We recall that where is the golden ratio and [ ] represents the nearest integer function Chord Meeting Firb - Genova, 5-6 luglio 2004

Fib-Chord Formally Let N (Fib(m-1), Fib(m)]. The scheme uses m-2 jumps of size Fib(i) for i = 2,3, …, m-1 Fib-Chord Diameter : Degree : Fib-Chord Meeting Firb - Genova, 5-6 luglio 2004

F-Chord( ) F a -Chord( ) Fib(2i), for i = 1,2, …, (1- )(m-2) Fib(i), for i = 2 (1- )(m-2) +2, …, m-1 F b -Chord( ) Fib(i), for i = 2, …,m-2 (1- )(m-2) Fib(2i), for i = (m-2 (1- )(m-2) )/2 +1, …, (m-1)/2 F a -Chord( ) and F b -Chord( ) use (m-2) jumps Fib-Chord even jumps all jumps even jumps [1/2,1] Meeting Firb - Genova, 5-6 luglio 2004

Property of F-Chord Degree: F-Chord( ) use (m-2) jumps Diameter: Theorem For any value of, the diameter of F-Chord( ) is m/ log N Average Path Length: Theorem The average path length of the F-Chord( ) scheme is bounded by log N + (1- ) log N Meeting Firb - Genova, 5-6 luglio 2004

F-Chord(1/2) Fib-Chord Diameter : Degree : F-Chord(1/2) = F a -Chord(1/2) = F b -Chord(1/2) Diameter : Degree : Fib-Chord F-Chord(1/2) Meeting Firb - Genova, 5-6 luglio 2004

The Lower Bound We provide a tradeoff of log N on the sum of the degree and the diameter in any P2P network using uniform routing on N identifiers. Theorem Let N(,d) denote the maximum number of consecutive identifiers obtainable trough a uniform algorithm using up to jumps (i.e. degree ) and diameter d. For any 0, d 0, it holds that N(,d) Fib( +d+1) F-Chord(1/2) is optimal Meeting Firb - Genova, 5-6 luglio 2004

Average path length Fib-Chord: log N F-Chord(1/2): log N Theorem For each [ , ] the F-Chord( ) schemes improve on Chord in all parameters (number of jumps, diameter, and average path length) Chord is better Meeting Firb - Genova, 5-6 luglio 2004

hops x log n Graphical results Meeting Firb - Genova, 5-6 luglio 2004 Lower is better

Congestion Our routing scheme is uniform, hence there is no node congestion [Xu, Kumar, Yu (2003)]. Theorem For each [1/2,1] the F-Chord( ) schemes is edge congestion free. A routing scheme is said to be c-edge congestion free if no edge is handling more than c times the average traffic per node Meeting Firb - Genova, 5-6 luglio 2004

Conclusions and Open Questions An optimal uniform routing algorithm with respect to diameter and degree A family of simple algorithms that improve uniform routing on Chord with respect to diameter, average path length and degree Open problem: Find a lower bound for the average path length on uniform routing algorithm Meeting Firb - Genova, 5-6 luglio 2004

Università di Salerno Dipartimento di Informatica ed Applicazioni R.M. Capocelli, 84081, Baronissi (SA) Meeting Firb - Genova, 5-6 luglio 2004 GRAZIE