Lesson 1-4: Angles 1 Lesson 1-4 Angles
Lesson 1-4: Angles 2 Angle and Points An Angle is a figure formed by two rays with a common endpoint, called the vertex. vertex ray Angles can have points in the interior, in the exterior or on the angle. Points A, B and C are on the angle. D is in the interior and E is in the exterior. B is the vertex. A B C D E
Lesson 1-4: Angles 3 Naming an angle: (1) Using 3 points (2) Using 1 point (3) Using a number – next slide Using 3 points:vertex must be the middle letter This angle can be named as Using 1 point:using only vertex letter * Use this method is permitted when the vertex point is the vertex of one and only one angle. Since B is the vertex of only this angle, this can also be called. A B C
Lesson 1-4: Angles 4 Naming an Angle - continued Using a number:A number (without a degree symbol) may be used as the label or name of the angle. This number is placed in the interior of the angle near its vertex. The angle to the left can be named as. * The “1 letter” name is unacceptable when … more than one angle has the same vertex point. In this case, use the three letter name or a number if it is present. 2 A BC
Lesson 1-4: Angles 5 Example Therefore, there is NO in this diagram. There is K is the vertex of more than one angle.
Lesson 1-4: Angles 6 4 Types of Angles Acute Angle: an angle whose measure is less than 90 . Right Angle: an angle whose measure is exactly 90 . Obtuse Angle: an angle whose measure is between 90 and 180 . Straight Angle: an angle that is exactly 180 .
Lesson 1-4: Angles 7 Measuring Angles l Just as we can measure segments, we can also measure angles. l We use units called degrees to measure angles. A circle measures _____ A (semi) half-circle measures _____ A quarter-circle measures _____ One degree is the angle measure of 1/360th of a circle. ? ? ? 360º 180º 90º
Lesson 1-4: Angles 8 Adding Angles When you want to add angles, use the notation m 1, meaning the measure of 1. If you add m 1 + m 2, what is your result? m 1 + m 2 = 58 . Therefore, m ADC = 58 . m 1 + m 2 = m ADC also.
Lesson 1-4: Angles 9 Angle Addition Postulate The sum of the two smaller angles will always equal the measure of the larger angle. Complete: m ____ + m ____ = m _____ MRKKRWMRW Postulate:
Lesson 1-4: Angles 10 Example: Angle Addition 3x + x + 6 = 90 4x + 6 = 90 – 6 = –6 4x = 84 x = 21 K is interior to MRW, m MRK = (3x) , m KRW = (x + 6) and m MRW = 90º. Find m MRK. 3x x+6 Are we done? m MRK = 3x = 321 = 63º First, draw it!
Lesson 1-4: Angles 11 Angle Bisector An angle bisector is a ray in the interior of an angle that splits the angle into two congruent angles. 5 3 Example: Since 4 6, is an angle bisector.
Lesson 1-4: Angles 12 3 5. Congruent Angles 5 3 Definition: If two angles have the same measure, then they are congruent. Congruent angles are marked with the same number of “arcs”. The symbol for congruence is Example:
Lesson 1-4: Angles 13 Example Draw your own diagram and answer this question: If is the angle bisector of PMY and m PML = 87 , then find: m PMY = _______ m LMY = _______