Thermochemistry
What is energy? Energy is the ability to do work or produce heat. The Law of Conservation of Energy: ◦ This law states that can not be created or destroyed only transferred. Two types of energy: ◦ Kinetic ◦ Potential
Heat is energy transferred from a warmer object to a cooler object. Heat is represented mathematically as q The amount of heat energy required to raise the temperature of one gram of pure water by one degree Celsius is called… a calorie The SI unit for energy is the Joule 1 Joule = calories 1 calorie = Joules
A breakfast of cereal, orange juice, and milk contains 230 Calories. Convert this amount of energy in to Joules. 9.6 x 10 5 J
Glucose is a simple sugar found in fruit. Burning 1.00 g of glucose releases 15.6 kJ of energy. How many Calories are released? 3.73 Calories An fruit and oatmeal bar contains 142 Calories. Convert this energy to Joules 5.94 x 10 5 A chemical reaction releases 86.5 kJ of heat. How many Calories are released? 20.7 Calories
The specific heat of any substance is the amount of heat required to raise the temperature of one gram of that substance by 1 degree Celsius. The specific heat of water is: 1 cal/g- o C J/g- o C The specific heat of concrete is 0.84 J/g- o C This is why in the summer concrete gets hot and water says cool.
The specific heat of a substance can be used to calculate the heat energy absorbed or given off when that substance changes temperature. q = (C)(m)(ΔT) remember ΔT = T final – T initial Calculate the heat absorbed by a 5 x 10 3 g block of concrete when its temperature is raised from 20 o C to 26 o C. 25,000 J or 25 kJ
The temperature of a sample of iron with a mass of 10.0 g changed from 50.4 o C to 25.0 o C and released 114 J. What is the specific heat of iron? J/g- o C If the temperature of 34.4 g of ethanol increase from 25.0 o C to 78.8 o C, how much heat has been absorbed buy the ethenol. (C for ethanol is 2.44 J/g- o C) 4.52 x 10 3 J
A 155 g sample of an unknown substance was heated from 25.0 o C to 40.0 o C. In the process, the substance absorbed 5696 J of energy. What is the specific heat of the substance? 2.45 J/g- o C A 38.8 g piece of metal alloy absorbs 181 J as its temperature increases from 25 o C to 36 o C. What is the alloy’s specific heat? J/g- o C
Thermochemistry is the study of heat changes during chemical reactions or phase changes. When studying thermochemistry we look at two things: System ◦ The system is the specific part of the universe that we are studying. Surroundings ◦ The surroundings are everything else in the universe.
Enthalpy is defined as the heat content of a system at constant pressure. The change in enthalpy for a reaction is called the enthalpy (heat) of reaction. ΔH rxn ΔH rxn = H products – H reactnats
A thermochemical equation is a balanced equation that includes the physical states of all reactants and products and the enthalpy change. 4 Fe(s) + 3 O 2 (g) 2 Fe 2 O 3 (s)ΔH = kJ NH 4 NO 3 (s) NH 4 + (aq) + NO 3 - ΔH = 27 kJ
Hess’s Law states that if you can add two or more equations to produce a final equation for a reaction than the sum of the enthalpy changes of the individual reactions is the enthalpy change of the overall reaction.
Calculate ΔH for the reaction 2 H 2 O 2 (l) 2 H 2 O(l) + O 2 (g) 2 H 2 (g) + O 2 (g) 2 H 2 O(l)ΔH = -572 kJ H 2 (g) + O 2 (g) H 2 O 2 (l)ΔH = -188 kJ
Use equations (a) and (b) to determine ΔH for the following reaction: 2 CO(g) + 2 NO(g) 2 CO 2 (g) + N 2 (g) a) 2 CO(g) + O 2 (g) 2 CO 2 (g) ΔH = kJ a) N 2 (g) + O 2 (g) 2NO(g) ΔH = kJ
ΔH for the following reaction is kJ. Use equation (a) to determine ΔH for reaction (b). 4 Al(s) + 3 MnO 2 (s) 2 Al 2 O 3 (s) + 3 Mn(s) a) 4 Al(s) + 3 O 2 2 Al 2 O 3 (s)ΔH = kJ b) Mn(s) + O 2 (g) MnO 2 ΔH = ?
The enthalpy of formation for any reaction is defined as the heat change when all reactants are in their elemental form and only one mole of product is produced. S(s) + 3 F 2 (g) SF 6 ΔH o f = kJ Sometimes we need to use fractional coefficients. H 2 (g) + F 2 (g) HFΔH o f = -273 kJ
We can use the enthalpy of formation for components of a reaction to calculate the total enthalpy change of the reaction (ΔH rxn ). H 2 S(g) + 4 F 2 (g) 2 HF(g) + SF 6 (g) a) ½ H 2 (g) + ½ F 2 (g) HF ΔH o f = -273 kJ b) S(s) + 3 F 2 (g) SF 6 ΔH o f = kJ c) H 2 (g) + S(s) H 2 S(g) ΔH o f = -21 kJ
Determine ΔH for CH 4 (g) + 2 O 2 (g) CO 2 (g) + 2 H 2 O(l) Using: ΔH o f (CO 2 ) = -394 kJ ΔH o f (H 2 O) = -286 kJ ΔH o f (CH 4 ) = -75 kJ ΔH o f (O 2 ) = 0 kJ
When things rust the reaction taking place is: 4 Fe(s) + 3 O 2 (g) 2 Fe 2 O 3 (s)ΔH = kJ Any physical or chemical that occurs with no outside intervention is a spontaneous process. If we reverse the above reaction: 2 Fe 2 O 3 (s) 3 O 2 (g) + 4 Fe(s) ΔH = 1625 kJ This process would be non-spontaneous
Entropy is a measure of the number of possible ways a system can be configured. If we have a piece of paper cut into 8 different sections there would be 56 different ways we could arrange them. (8 x 7) If we cut the paper into 16 different pieces there would be 240 different ways we could arrange them. (16 x 15) We have increased the papers entropy.
The second law of thermodynamics states that a spontaneous reaction will always occur in such a way that entropy increases. Remember that the change in enthalpy (ΔH) is defined as: H products – H reactants Similarly: ΔS = S products – S reactants If ΔS is positive the entropy of the system is increasing. If ΔS is negative the entropy of the system is decreasing.
Phase Changes: ◦ When a phase change occurs from a more ordered state to a less ordered state ΔS will be positive. ◦ Solid Liquid ΔS > 0 ◦ When a phase change occurs from a less ordered state to a more ordered state ΔS will be negative. ◦ Gas LiquidΔS < 0 Dissolving a gas into a solvent always results in a decrease in entropy.
Assuming no change in physical state, entropy increases when the number of moles of products is greater than the number of moles of reactants. ◦ 2 SO 3 (g) 2 SO 2 (g) + O 2 (g) Entropy increases when a solute dissolves in a solvent. ◦ NaCl(s) Na + (aq) + Cl - (aq) Entropy increases as temperature increases.
Predict the sign of ΔS for each of the following chemical of physical processes ClF(g) + F 2 (g) ClF 3 (g)ΔS = NH 3 (g) NH 3 (aq)ΔS = Entropy has the units Joules/Kelvin
Named after physicist J. Willard Gibbs, free energy is the maximum amount of energy available during a chemical reaction. Gibbs Free Energy Equation: ΔG = ΔH – TΔS When a reaction occurs at standard conditions (298 K and 1atm) ΔG o = ΔH o - ΔS o
ΔG = ΔH – TΔS A reaction where ΔH is negative and ΔS is positive will always be spontaneous. N 2 (g) + 3 H 2 (g) 2 NH 3 (g) ΔH = kJΔS = -197 J/k ΔG = ΔG = kJ
ΔHΔSΔGReaction Spontaneity
For a process ΔH is 145 kJ and ΔS is 322 J/K. Calculate ΔG for this reaction at 298 K. Is it spontaneous?