Bacteria Prokaryotes are single cell organisms that lack a nucleus. Their size range form 1-5 micrometers which is smaller than most eukaryotic cell. Epulopiscium.

Slides:



Advertisements
Similar presentations
Bacteria.
Advertisements

1 Review In what ways do prokaryotes differ from one another Evaluate Use pg 486. Which category of prokaryote is the most flexible in the energy sources.
Prokaryotes 20-2 Federoff. Classifying Prokaryotes –The smallest and most abundant microorganisms on Earth are prokaryotes—unicellular organisms that.
Kingdom Monera (Bacteria and Archaebacteria)
1 Chapter 19 Bacteria & Viruses. 2 19–1 Bacteria Prokaryote = single-celled organism lacking a nucleusProkaryote = single-celled organism lacking a nucleus.
Bacteria and Viruses Ch. 19 Page 470. Bacteria 19-1 Bacteria are prokaryotes Bacteria are prokaryotes That is, they contain no nucleus That is, they contain.
Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes.
Biology 112 BACTERIA AND VIRUSES.  Smallest and most common microorganisms  Unicellular organisms that lack a nucleus  They can be divided into two.
Chapter 18.  Domain Archaea  Only one kingdom: Archaebacteria ▪ Cells contain cell walls ▪ Live in extreme environments (hot, acidic, salty, no O 2.
Prokaryote Microorganisms 11.0 Classify animals according to type of skeletal structure, method of fertilization and reproduction, body symmetry, body.
Ch 19- Bacteria and Viruses
Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes.
An introduction to bacteria They Are Everywhere. Prokaryotes Prokaryote: Single-celled organism that lacks a true nucleus (also called bacteria) Prokaryote:
Chapter 20: Viruses and Prokaryotes
Eubacteria & Archarbacteria
Identifying and Classifying Bacteria Ch. 23. What is a prokaryote? Cells that lack a true nucleus. Cells that lack a true nucleus. Cells that lack membrane-
Bacteria. Characteristics prokaryotic unicellular usually have locomotion reproduce sexually & asexually.
Bacteria Ch.19-1 By: A. Cortez. Classifying Prokaryotes Thanks to Robert Hooke and Anton van Leeuwenhoek, the invention of the microscope opened our eyes.
Bacteria. Bacterial Video Video Bacterial Kingdoms 1.Archaebacteria   Called “Ancient” bacteria  Live in harsh environments- volcanic vents, hot springs,
Prokaryotic life Characteristics, Classification, Evolution.
Kingdom Monera Bacteria Structure, Shape, Movement & Reproduction.
Bacteria and Viruses Chapter 19. Introduction Microscopic life covers nearly every square centimeter of Earth.  In a single drop of pond water you would.
End Show Slide 1 of 40 Biology Mr. Karns Bacteria.
Unit 6 Microorganisms & Fungi Ch. 19 Bacteria & Viruses.
Chapter 19. Eubacteria Are prokaryotes – have no membrane bound nucleus The larger of the 2 kingdoms Live almost everywhere Fresh water, salt water, land,
BACTERIA NOTES Bacteria The smallest and most common microorganisms are prokaryotes— unicellular organisms that lack a nucleus. Earliest fossils.
Notes 4/15. Chapter 16 Bacteria and Viruses Did you know?!!?!?!? –Bacteria are small living things –It would take a million to cover a pin head (another.
CHAPTER 19 NOTES BACTERIA.
Bacteria. Prokaryote – single celled with no nucleus Eubacteria – peptidoglycan (a carbohydrate) cell wall Archaebacteria – cell wall of lipids, no peptidoglycan.
Bacteria, Viruses, Prions, and Protists
Chapter 18 Bacteria.
BACTERIA KEY CONCEPTS.
Prokaryotes Think!!!!: What is the study of microorganisms called? What is the study of bacteria called? Think!!!!: What is the study of microorganisms.
CHAPTER Bacteria. Classifying Prokaryotes Divided into two different groups: 1. Eubacteria Larger of the 2 domains Live almost everywhere Cell.
Bacteria What you need to know!!!!. What are Bacteria? They are prokaryotes that have cell walls containing peptidoglycans. Prokaryotes: Organisms who’s.
Starter: Watch Video How was the virus able to enter the cell? How are viruses able to reproduce? If you breathe in the flu virus, will you automatically.
Bacteria Classification and Characteristics By: Sarah Haudrich, Kiley Plenderl eith and Jimmy Livingston.
PAP Bacteria and Virus Notes Ch 19. Bacteria are grouped into two kingdoms: -Eubacteria and Arcahebacteria -Eubacteria and Archaebacteria have different.
BACTERIA Structure, Function, Reproduction, and Growth.
End Show Slide 1 of 40 Copyright Pearson Prentice Hall Biology.
Bacteria Chapter 20 Sections 1. What Are Prokaryotes?  Single-celled organisms that do not have membrane-bound organelles  Found in 3 shapes:  Bacillus.
Lesson Overview Lesson OverviewViruses Lesson Overview 20.2 Prokaryotes.
Prokaryotes: Bacteria. Bacteria Found on almost every square cm of Earth Bacteria = prokaryotes –Remember: no nucleus and no membrane bound organelles.
Thursday 4/28/16 Learning Target: Learning Target: Know the types, shapes, and growth and reproduction of bacteria. Know the types, shapes, and growth.
Copyright Pearson Prentice Hall
C. Metabolic Diversity in Bacteria
Metabolic Diversity Prokaryotes are divided into two main groups:
Chapter #20 : Bacteria and Viruses
Copyright Pearson Prentice Hall
By: Daniel Ospina and Nicolle Rodriguez
Biology of Prokaryotes
Classification of Bacteria
TSW investigate and understand the life functions of Monerans
Bacteria For every “human” cell, there are 20 bacteria present on our body (but they are smaller)…..this accounts for ~10% of the mass that you carry around.
Bacteria.
Bacteria and Viruses Prokaryotes: single cell organism that lacks a nucleus Divided into two groups, or domains, which are above kingdoms Eubacteria and.
Copyright Pearson Prentice Hall
EUBACTERIA and ARCHAEBACTERIA pp
EUBACTERIA and ARCHAEBACTERIA pp
Bacteria.
Bacteria And why they are cool!.
Bacteria.
Daily Science Discussion review with Miss Hager about requirements of life.
Bacteria Classification
Bacteria & Viruses Chapter 19.
Bacteria.
An introduction to bacteria
Or “study of itty-bitty creepy things”
More on Monerans.
Bacteria.
Presentation transcript:

Bacteria Prokaryotes are single cell organisms that lack a nucleus. Their size range form 1-5 micrometers which is smaller than most eukaryotic cell. Epulopiscium fisheloni is a gigantic prokaryote measuring at 500 micrometers long. All prokaryotes were placed in the Kingdom Monera. Biologist divided the Monera into 2 different groups: eubacteria and archaebacteria.

Eubacteria Is the larger of the 2 Kingdoms Freshwater, salt water, on land and within the human body. Example: E. Coli lives in the human intestines. Surrounded by a cell wall that protects the cell from injury and determines its shape. The cell wall of eubacteria contains peptidoglycan, a carbohydrate. Inside the cell wall is a cell membrane that surrounds the cytoplasm. Some eubacteria have a second, membrane outside the cell membrane making it especially resistant to damage.

Archaebacteria Looks similar to eubacteria Equally small, lack nuclei, have cell walls but chemically different Archaebacteria lacks the peptidoglycan of eubacteria and have different membrane lipids. The DNA sequences of key archaebacteria genes are more like those of eukaryotes than those of eubacteria.

Archaebacteria Archaebacteria may be ancestors of eukaryotes. They live in extremely hard environments that produce methane gas. Methogens live in oxygen-free environments such as mud and digestive tracts of animals. They live in extremely salty environments such as Utah Great Salt Lakes, hot springs where the temperatures approach the boiling point of water.

Identifying Prokaryotes Prokaryotes are identified by characteristics such as shape, chemical nature of their cell walls, the way they move, and the way they obtain energy. Shapes bacilli are rod shaped cocci are spherical Sprilla spiral and corkscrew

Identifying Prokaryotes Cell Walls - 2 different types Gram Staining is used to tell them apart Violet (primary stain) is applied first. It stains the peptidoglycan cell wall. The alcohol treatment wash out the stain. Gram positive bacteria have thick peptidoglycan walls which retains the dark col0r. Gram Negative bacteria have thinner walls inside an outer lipid layer. Alcohol dissolves th lipid and removes dye from the walls of the bacteria. Red (counter stain) makes bacteria appear pink and light red.

Movement of the Prokaryotes Some prokaryotes do not move. Others are propelled by flagella, whiplike structures use for movement. Prokaryotes lash, snake or spiral forward, other glide slowly along a layer of slimelike material they secrete.

Metabolic Diversity Most prokaryotes are heterotrophs, they get their energy from consuming organic molecules made by other organisms. Autotrophs make their own food from inorganic molecules. Heterotrophs take in organic molecules for both energy and supply of carbon called chemoheterotrophs.

Metabolic Diversity Staphylococcus aureus releases toxins that cause food poisoning. Photoheterotrophs are photosynthetic and use sunlight for energy. They also take in organic compounds as a carbon source.

Autotrophs Use light energy to convert carbon dioxide and water to carbon compounds and oxygen in a process similar to that used by green plants. Found in surfaces of lakes, streams, and oceans. Cyanobacteria is a bluish pigment and chlorophyll a the key pigment in photosynthesis. They are found in freshwater, salt water, and even on land. Cyanobacteria is the first species to recolonize the site of a natural disaster such as volcanic eruption.

Chemoautotrophs performs chemosynthesis makes organic carbon molecules from carbon dioxide do not require light as a source of energy use energy directly from chemical reactions involving ammonia, hydrogen sulfide, nitrites, sulfur and iron some live deep in the darkness of the ocean. They obtain energy from hydrogen sulfide gas that flows from the hydrothermal vents on the ocean floor.

Growth and Reproduction Binary Fission is when the bacterium nearly double in size, it replicates its DNA and divides in half producing 2 identical daughter cells. It does not involve the exchange or recombination of genetic information. It is an asexual form of reproduction. Conjugation is the exchange of genetic information by a process. A hollow bridge forms between 2 bacterial cells. The genes moves from one cell to the other. The transfer of genetic information increases genetic diversity in populations of bacteria.

Spore Formation Spore Formation is when growth conditions become unfavorable many bacteria will form structures called spores. Endospores is when bacterium produces a thick internal wall that encloses DNA and a portion of its cytoplasm. Spores can remain dormant for months or even years while waiting for more favorable growth conditions. When conditions improve the endospore will germinate and bacterium will begin to grow. They can survive harsh conditions including extreme heat, dryness of lack of nutrients.