Spatial data Visualization spatial data Ruslan Bobov

Slides:



Advertisements
Similar presentations
Week 1: Introduction to GIS
Advertisements

COMPUTERS AND STATISTICS IN ARCHAEOLOGY Week 4. Geographic Information Systems (GIS) - 2 © Richard Haddlesey
Geographic Information Systems GIS Data Models. 1. Components of Geographic Data Spatial locations Attributes Topology Time.
Geographic Information Systems
WFM 6202: Remote Sensing and GIS in Water Management © Dr. Akm Saiful IslamDr. Akm Saiful Islam WFM 6202: Remote Sensing and GIS in Water Management Akm.
Geog 405: Advanced Spatial Analysis © J.M. Piwowar1Spatial Data Models Characteristics of Raster Data Longley et al., Geographic Information Systems.
GIS for Environmental Science
Raster Based GIS Analysis
Group 3 Akash Agrawal and Atanu Roy 1 Raster Database.
Introduction to Cartography GEOG 2016 E
Maps as Numbers Getting Started with GIS Chapter 3.
Cartographic and GIS Data Structures
GIS Overview. What is GIS? GIS is an information system that allows for capture, storage, retrieval, analysis and display of spatial data.
CS 128/ES Lecture 5b1 Vector Based Data. CS 128/ES Lecture 5b2 Spatial data models 1.Raster 2.Vector 3.Object-oriented Spatial data formats:
You have just been given an aerial photograph that is not registered to real world coordinates. How do you display the aerial with other data layers that.
GIS 200 Introduction to GIS Buildings. Poly Streams, Line Wells, Point Roads, Line Zoning,Poly MAP SHEETS.
Maps as Numbers Lecture 3 Introduction to GISs Geography 176A Department of Geography, UCSB Summer 06, Session B.
Lecture 06: Map Data Structures Geography 128 Analytical and Computer Cartography Spring 2007 Department of Geography University of California, Santa Barbara.
Geographic Information Systems : Data Types, Sources and the ArcView Program.
NPS Introduction to GIS: Lecture 1
©2005 Austin Troy. All rights reserved Lecture 3: Introduction to GIS Part 1. Understanding Spatial Data Structures by Austin Troy, University of Vermont.
Geographical Information System GIS By: Yahia Dahash.
Raster and Vector 2 Major GIS Data Models. Raster and Vector 2 Major GIS Data Models.
Introduction to GIS. Watershed Discretization (model elements) + Land Cover Soil Rain Results Intersect model elements with Digital Elevation Model (DEM)
Rebecca Boger Earth and Environmental Sciences Brooklyn College.
Spatial Data Model: Basic Data Types 2 basic spatial data models exist vector: based on geometry of points lines Polygons raster: based on geometry of.
©2005 Austin Troy. All rights reserved Lecture 3: Introduction to GIS Understanding Spatial Data Structures by Austin Troy, Leslie Morrissey, & Ernie Buford,
Spatial data models (types)
M ETHODS OF REPRESENTING GEOGRAPHIC SPACE Raster Model Vector Model.
SPATIAL DATA STRUCTURES
GIS1: Overview of GIS and Visualization with Maps
GIS UPDATE?. Review Lab 1: Scale Review Lab 1: Scale Today’s Material: Today’s Material: Data Models: Vector Data Vector Data Raster Data Raster Data.
GROUP 4 FATIN NUR HAFIZAH MULLAI J.DHANNIYA FARAH AN-NUR MOHAMAD AZUWAN LAU WAN YEE.
GIS is composed of layers Layers –land/water –roads –urban areas –pollution levels Data can be represented by VECTORS, or Data can be represented by RASTERS.
GIS 1110 Designing Geodatabases. Representation Q. How will we model our real world data? A. Typically: Features Continuous Surfaces and Imagery Map Graphics.
Geo-referenced Information Processing System. ISPRS Geoprocessing Technologies to collect and treat spatial information for a specific goal. Geoprocessing.
Presented by Rehana Jamal (GIS Expert & Geographer) Dated: Advance Applications of RS/GIS in Geo-Environmental Conservation Subject Lecture# 9&10.
Geographic Information System GIS This project is implemented through the CENTRAL EUROPE Programme co-financed by the ERDF GIS Geographic Inf o rmation.
Applied Cartography and Introduction to GIS GEOG 2017 EL Lecture-2 Chapters 3 and 4.
Major parts of ArcGIS ArcView -Basic mapping, editing and Analysis tools ArcEditor -all of ArcView plus Adds ability to deal with topological and network.
GIS Data Structure: an Introduction
8. Geographic Data Modeling. Outline Definitions Data models / modeling GIS data models – Topology.
How do we represent the world in a GIS database?
Support the spread of “good practice” in generating, managing, analysing and communicating spatial information Introduction to GIS for the Purpose of Practising.
Raster Data Model.
Cartographic and GIS Data Structures Dr. Ahmad BinTouq URL:
1 Data models Vector data model Raster data model.
GEOG 2007A An Introduction to Geographic Information SystemsFall, 2004 C. Earl A model is a ‘synthesis of data’ + information about how the data interact.
Introducing ArcGIS Chapter 1. Objectives  Understand the architecture of the ArcGIS program.  Become familiar with the types of data files used in ArcGIS.
GIS Data Structures How do we represent the world in a GIS database?
GIS Data Types. GIS technology utilizes two basic types of data 1. Spatial Data Describes the absolute and relative location of geographic features.
Lab 2: GIS Data Models Yingjie Hu. Objectives Understanding GIS data models Manipulating the data models supported in ArcGIS.
Geographic Information Systems
INTRODUCTION TO GIS  Used to describe computer facilities which are used to handle data referenced to the spatial domain.  Has the ability to inter-
Introduction to Geographic Information Systems (GIS)
What is GIS? “A powerful set of tools for collecting, storing, retrieving, transforming and displaying spatial data”
Raster Data Models: Data Compression Why? –Save disk space by reducing information content –Methods Run-length codes Raster chain codes Block codes Quadtrees.
Spatial Data Models Geography is concerned with many aspects of our environment. From a GIS perspective, we can identify two aspects which are of particular.
UNIT 3 – MODULE 3: Raster & Vector
Czech Technical University in Prague Faculty of Transportation Sciences Department of Transport Telematics Doc. Ing. Pavel Hrubeš, Ph.D. Geographical Information.
Geographic Information Systems “GIS”
Spatial Data Models.
INTRODUCTION TO GEOGRAPHICAL INFORMATION SYSTEM
Geographic Information System
Spatial Data Models Raster uses individual cells in a matrix, or grid, format to represent real world entities Vector uses coordinates to store the shape.
Data Queries Raster & Vector Data Models
Cartographic and GIS Data Structures
Geographic Information Systems
Prepared by S Krishna Kumar
Presentation transcript:

Spatial data Visualization spatial data Ruslan Bobov

Introduction What is Spatial Data? Spatial Data Types Vector Data Raster Data Visualization of Spatial Data

What is Spatial Data? Spatial Data – it is the data or information that identifies the geographic location of features and boundaries on Earth , such as natural or constructed features, oceans , and more . Spatial data is usually stored as coordinate and topology, and is data that can be mapped.

In GIS, there are 2 basic spatial data types Raster Vector

Vector Data Vector data provide a way to represent real world features within the GIS environment. A vector feature has its shape represented using geometry. The geometry is made up of one or more interconnected vertices. A vertex describe a position in space using an x, y and optionally z axis. In the vector data model, features on the earth are represented as: points lines / routes polygons / regions TINs (triangulated irregular networks)

Vector Data This system of recording features is based on the interaction between arcs and nodes, represented by points, lines and polygons. A point is a single node, a line is two nodes with an arc between them, and a polygon is a closed group of three or more arcs. With these three elements , it is possible to record most all necessary information. Points Lines Polygons

Vector Data Vector data are good at accurately representing true shape and size representing non-continuous data (e.g., rivers, political boundaries, road lines, mountain peaks) creating aesthetically pleasing maps conserving disk space

Vector Data Advantages : Data can be represented at its original resolution and form without generalization. Graphic output is usually more aesthetically pleasing (traditional cartographic representation); Since most data, e.g. hard copy maps, is in vector form no data conversion is required. Accurate geographic location of data is maintained. Disadvantages: The location of each vertex needs to be stored explicitly. For effective analysis, vector data must be converted into a topological structure. This is often processing intensive and usually requires extensive data cleaning. As well, topology is static, and any updating or editing of the vector data requires re-building of the topology.

Vector Data

Vector Data

Raster Data Raster Data – cell –based data such as aerial imagery and digital elevation models. Raster data is characterized by pixel values. Basically, a raster file is a giant table, where each pixel is assigned a specific value from 0 to 255. The meaning behind these values is specified by the user – they can represent elevations, temperature, hydrology and etc.

Raster Data Raster data are good at: representing continuous data (e.g., slope, elevation) representing multiple feature types (e.g., points, lines, and polygons) as single feature types (cells) rapid computations ("map algebra") in which raster layers are treated as elements in mathematical expressions analysis of multi-layer or multivariate data (e.g., satellite image processing and analysis) hogging disk space

Raster Data Advantages : The geographic location of each cell is implied by its position in the cell matrix. Accordingly, other than an origin point, e.g. bottom left corner, no geographic coordinates are stored. Due to the nature of the data storage technique data analysis is usually easy to program and quick to perform. The inherent nature of raster maps, e.g. one attribute maps, is ideally suited for mathematical modeling and quantitative analysis. Grid-cell systems are very compatible with raster-based output devices, e.g. electrostatic plotters, graphic terminals.

Raster Data Disadvantages: The cell size determines the resolution at which the data is represented.; It is especially difficult to adequately represent linear features depending on the cell resolution. Accordingly, network linkages are difficult to establish. Processing of associated attribute data may be cumbersome if large amounts of data exists. Raster maps inherently reflect only one attribute or characteristic for an area. Most output maps from grid-cell systems do not conform to high-quality cartographic needs.

Visualization of Spatial Data

Visualization of Spatial Data (Maps)

Visualization of Spatial Data (Maps)

Visualization of Spatial Data (Maps)

Visualization of Spatial Data (Maps)

Assignment: Creating the vector data with software in computer. Prepare the thematic map (using free vector data source form Internet )

Thank you for your attention!