Course: Introduction to RS & DIP

Slides:



Advertisements
Similar presentations
Remote Sensing. Readings: and lecture notes Figures to Examine: to Examine the Image from IKONOS, and compare it with the others.
Advertisements

AMwww.Remote-Sensing.info Ch.2 Remote Sensing Data Collection
Resolution.
Remote Sensing Media Aircraft BasedAircraft Based –photography (BW, Color), infrared (BW, Color) –RADAR (SLAR, SAR) –LIDAR (light detection and ranging)
Radiometric and Geometric Errors
Remote Sensing II Sensors Konari, Iran Image taken 2/2/2000
Orbits and Sensors Multispectral Sensors
Multispectral Remote Sensing Systems
Remote Sensing Systems. Early Satellite Sensing Spy satellites gave exquisite but very local views and were classified Even before satellites were launched,
Remote Sensing of Our Environment Using Satellite Digital Images to Analyze the Earth’s Surface.
Detector Configurations Used for Panchromatic, Multispectral and Hyperspectral Remote Sensing Jensen, 2000.
Introduction, Satellite Imaging. Platforms Used to Acquire Remote Sensing Data Aircraft Low, medium & high altitude Higher level of spatial detail Satellite.
Data Merging and GIS Integration
Remote Sensing of Mesoscale Vortices in Hurricane Eyewalls Presented by: Chris Castellano Brian Cerruti Stephen Garbarino.
Institute of remote sensing applications, CAS China Earth Observation Satellite Program Dr. Yuan Zeng Institute of Remote Sensing Applications,
Meteorological satellites – National Oceanographic and Atmospheric Administration (NOAA)-Polar Orbiting Environmental Satellite (POES) Orbital characteristics.
CS 128/ES Lecture 9a1 Principles of Remote Sensing Image from NASA – Goddard Space Flight Center, NOAA GOES-8 satellite, 2 Sep ’94, 1800 UT.
Geosynchronous Orbit A satellite in geosynchronous orbit circles the earth once each day. The time it takes for a satellite to orbit the earth is called.
CS 128/ES Lecture 8b1 Principles of Remote Sensing Image from NASA – Goddard Space Flight Center, NOAA GOES-8 satellite, 2 Sep ’94, 1800 UT.
More Remote Sensing Today- - announcements - Review of few concepts - Measurements from imagery - Satellites and Scanners.
Carolyn J. Merry NCRST-Flows The Ohio State University.
Lecture 21: Major Types of Satellite Imagery By Austin Troy University of Vermont Using GIS-- Introduction to GIS.
Remote sensing of natural hazards Remote sensing = satellite imagery and aerial photography They range from low resolution (weather satellites) to very.
©2008 Austin Troy Lecture 21: Major Types of Satellite Imagery By Austin Troy and Weiqi Zhou University of Vermont Using GIS-- Introduction to GIS.
Copyright © 2003 Leica Geosystems GIS & Mapping, LLC Turning Imagery into Information Suzie Noble, Product Specialist Leica Geosystems Denver, CO.
Satellite Imagery and Remote Sensing NC Climate Fellows June 2012 DeeDee Whitaker SW Guilford High Earth/Environmental Science & Chemistry.
Geography 372 Fall 2003November 4, Remote Sensing of the Land Surface: High Spatial Resolution Michael D. King & Compton J. Tucker Outline  Land.
Digital Numbers The Remote Sensing world calls cell values are also called a digital number or DN. In most of the imagery we work with the DN represents.
Remotely Sensed Data EMP 580 Fall 2015 Dr. Jim Graham Materials from Sara Hanna.
Dr. Garver GEO 420 Sensors. So far we have discussed the nature and properties of electromagnetic radiation Sensors - gather and process information detect.
Remote Sensing with Multispectral Scanners. Multispectral scanners First developed in early 1970’s Why use? Concept: Gather data from very specific wavelengths.
Resolution A sensor's various resolutions are very important characteristics. These resolution categories include: spatial spectral temporal radiometric.
Resolution Resolution. Landsat ETM+ image Learning Objectives Be able to name and define the four types of data resolution. Be able to calculate the.
Remote Sensing and Image Processing: 8 Dr. Hassan J. Eghbali.
Slide #1 Emerging Remote Sensing Data, Systems, and Tools to Support PEM Applications for Resource Management Olaf Niemann Department of Geography University.
Chapter 5 Remote Sensing Crop Science 6 Fall 2004 October 22, 2004.
West Hills College Farm of the Future. West Hills College Farm of the Future Precision Agriculture – Lesson 4 Remote Sensing A group of techniques for.
INDICES FOR INFORMATION EXTRACTION FROM SATELLITE IMAGERY Course: Introduction to RS & DIP Mirza Muhammad Waqar Contact:
Juan de Dios Barrios, M.S. Research Associate Nick J. Rahall Appalachian Transportation Institute and James O. Brumfield, Ph. D. College of Science Marshall.
Course: Introduction to RS & DIP
What is an image? What is an image and which image bands are “best” for visual interpretation?
Remote Sensing Data Acquisition. 1. Major Remote Sensing Systems.
Satellite Image Products. NOAA AVHRR ( Advanced Very High Resolution Radiometer – AVHRR) AVHRR/3 Channel Characteristics Channel Number Resolution at.
Satellite Imagery and Remote Sensing DeeDee Whitaker SW Guilford High EES & Chemistry
Terra Launched December 18, 1999
Remote Sensing SPOT and Other Moderate Resolution Satellite Systems
The WMO Space Programme
EG1106 geographic information: a primer Introduction to remote sensing 24 th November 2004.
CHARACTERISTICS OF OPTICAL SENSORS Course: Introduction to RS & DIP Mirza Muhammad Waqar Contact: EXT:2257 RG610.
Environmental Remote Sensing GEOG 2021 Lecture 8 Observing platforms & systems and revision.
Satellites Storm “Since the early 1960s, virtually all areas of the atmospheric sciences have been revolutionized by the development and application of.
Geosynchronous Orbit A satellite in geosynchronous orbit circles the earth once each day. The time it takes for a satellite to orbit the earth is called.
SATELLITE ORBITS The monitoring capabilities of the sensor are, to a large extent, governed by the parameters of the satellite orbit. Different types of.
M. Shah Alam Khan Associate Professor Institute of Water and Flood Management, Bangladesh University of Engineering and Technology Hydro-ecological Investigation.
Interactions: atmosphere EG2234 Earth Observation.
Satellite Imagery and Remote Sensing DeeDee Whitaker SW Guilford High EES & Chemistry
Data compression – For image archiving (satellite data) – For image transfer over internet.
Reading assignments for chapter 6 Pages – – – –
Orbits and Sensors Multispectral Sensors. Satellite Orbits Orbital parameters can be tuned to produce particular, useful orbits Geostationary Sun synchronous.
Sensors Dr. Garver GEO 420.
Dr. P Shanmugam Associate Professor
PLATFORMS & SENSORS Platform:
Remote Sensing.
ERT 247 SENSOR & PLATFORM.
From balloon, launched by students in Massachusetts, September 2, 2009
Digital Numbers The Remote Sensing world calls cell values are also called a digital number or DN. In most of the imagery we work with the DN represents.
Satellite Sensors – Historical Perspectives
IKONOS ~Derived from the Greek term eikōn, meaning image~
Summary - end of term Lab Monday: 4 April return of assignments Lecture exam: 5 April, projects by end of term: April 6 Lecture evaluation.
Representing Climate Data II
Presentation transcript:

Course: Introduction to RS & DIP Satellite System Mirza Muhammad Waqar Contact: mirza.waqar@ist.edu.pk +92-21-34650765-79 EXT:2257 RG610 Course: Introduction to RS & DIP

Contents Satellite Remote sensing Remote Sensing Process Sensor types Major satellites system Resolutions Low Resolution Satellite Systems Medium Resolution Satellite Systems High Resolution Satellite Systems These are the contents of my presentation.

Satellite Orbits Polar‐orbiting, sun‐synchronous. approx 800‐900 km altitude, 90‐100 minutes/ orbit, round the Earth in a polar direction and with each orbit pass over the equator about 30 degree west of the previous orbit. Geostationary (geo‐synchronous). approx 35,900 km altitude, 24 hrs/orbit stationary relative to Earth.  traveling at the same speed as the rotation of the Earth.

Characterizing the Resolutions With respect to Spatial resolution: High spatial resolution: < 4 m Medium spatial resolution: 4 m ‐30 m Low spatial resolution: > 30  m With respect to Spectral resolution: High spectral resolution: > 15 bands Medium spectral resolution: 3 ‐ 15 bands Low spectral resolution: < 3 bands With respect to Temporal resolution: High temporal resolution: < 3 days Medium temporal resolution: 3 ‐ 16 days Low temporal resolution: > 16 days

High Resolution Satellite Systems Sensors   Satellite/ Sensor   Ikonos Space Imaging, USA SPOT France Quick Bird Digital Globe, USA GeoEye 1 GeoEye, USA World-View 1 OrbView-3 OrbImage, USA

Ikonos System Ikonos Orbit Sun‐synchronous, 681 km Sensor Optical Sensor Assembly (OSA) Swath 11 km Revisit Time 1‐3 days Spectral Bands  (µm) 0.45‐0.52 (1), 0.52‐0.60 (2), 0.63‐0.69 (3), 0.76‐0.90  (4),0.45‐.90(PAN) Spatial  Resolution 1 m (PAN), 4 m (bands 1‐4) System Ikonos Orbit Sun‐synchronous, 681 km Sensor Optical Sensor Assembly (OSA) Swath 11 km Revisit Time 1‐3 days Spectral Bands  (µm) 0.45‐0.52 (1), 0.52‐0.60 (2), 0.63‐0.69 (3), 0.76‐0.90  (4),0.45‐.90(PAN) Spatial  Resolution 1 m (PAN), 4 m (bands 1‐4)

Ikonos image 1m IKONOS view of Dubai

Ikonos Image 1m IKONOS pan image of Rome

SPOT SPOT (Systeme Pour l’ Observation de la Terre) SPOT 1 launched 1986, decommissioned and the reactivated in 1997 SPOT 2 launched 1990, still going SPOT 3 launched 1993 and stopped functioning 1996 SPOT 4 launched in 1998, still going SPOT 5 launched in 2002

SPOT series Satellite Launched Sensors Revisit(nadir Viewing) SPOT 1 1 Feb 1986 HRV1 & HRV 2 26 days SPOT 2 Dec 1990 SPOT 3 Sept 1993 SPOT 4 March 1998 SPOT 5 May 2002

SPOT

SPOT 5 Satellite Image - Manchar, Pakistan

Medium Resolution Satellite Systems and Sensors Satellite / Sensor Landsat National Aeronautics and Space Administration (NASA), USA MODIS NASA, USA ASTER NASA, USA IRS India

LANDSAT First started by NASA in 1972 but later turned over to NOAA.

LANDSAT series Satellite Launched Status Sensor Revisit LANDSAT 1 July 23, 1972 expired, January 6, 1978 RBV, MSS 18 days LANDSAT 2 January 22, 1975 expired, February 5, 1982 LANDSAT 3 March 5,1978 expired, March 31, 1983 LANDSAT 4 July 16 ,1982 decommissioned, June 15, 2001 TM, MSS 16 days LANDSAT 5 March 1, 1984 TM still operational! MSS instrument decommissioned LANDSAT 6 October 5, 1993 Lost at launch ETM LANDSAT 7 April 15,1999 operational despite Scan Line Corrector (SLC) failure May 31, 2003 ETM+

LANDSAT 7 System Landsat‐7 Orbit Sun‐synchronous, 705 km Sensor ETM + (Enhanced Thematic Mapper) Swath 185 km Revisit Time 16 days Spectral Band (µm) 0.45‐0.52 (1), 0.52‐0.60 (2), 0.63‐0.69 (3),0.76‐0.90 (4), 1.55‐1.75 (5), 10.4‐12.5(6), 2.08‐2.34(7), 0.50‐0.90 (PAN) Spatial  Resolution 15 m (PAN), 30 m (bands 1‐5, 7), 60 m (band 6)

Spectral band of Landsat 1 0.45‐0.52  (Blue) Coastal water mapping, sediment mapping, pollution & haze detection 2 0.52‐0.60  (Green) Chlorophyll reflectance peak, vegetation species mapping,  vegetation stress 3 0.63‐0.69  (Red) Chlorophyll absorption, plant species differentiation, biomass  content 4 0.76‐0.90  (NIR Vegetation species and stress, biomass content, soil moisture 5 1.55‐1.75  (SWIR) Vegetation‐soil delineation, urban area mapping, snow‐cloud  differentiation 6 10.4‐12.5  (TIR) Vegetation stress analysis soil moisture and evapotranspiration mapping, surface temperature mapping 7 2.08‐2.34  (SWIR Mineral and rock type mapping, water‐body delineation,  vegetation moisture content mapping 8 0.50‐0.90  (PAN) Medium‐scale topographic mapping, image sharpening, snow‐ cover classification

LANDSAT Imagery shows wetlands, urban, open water, forest

Low Resolution Satellite Systems Geostationary Meteosat European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) GOES United States' National Weather Service (NWS) operations, NOA GMS The National Space Development Agency of Japan (NASDA) and the Japan Meteorological Agency, Japan Polar orbiting NOAA Series NOAA, USA Feng Yun Series  (polar orbiting) China Meteorological Administration, China

Meteosat

Meteosat Geostationary meteorological satellites Operator: EUMETSAT Start of Program: 1977 Three Phases: –Meteosat Operational Program (MOP) 1977 ‐ 1995 –Meteosat Transition Program(MTP)1995‐2004 –Meteosat Second Generation (MSG) 2004 onwards Current satellite Meteosat‐9 (MSG‐2)

Meteosat System Meteosat‐8 Orbit Geostationary Sensor SEVIRI (Spinning Enhanced VIS and IR Imager) Swath Full Earth Disc Revisit Time 15 minutes Spectral Bands (µm) 0.5‐0.9 (PAN), 0.6, 0.8 (VIS), 1.6, 3.9 (IR), 6.2, 7.3  (Water Vapor (WV)), 8.7, 9.7, 10.8, 12.0, 13.4 (TIR) Spatial  Resolution 1 km (PAN), 3 km (all other bands)

Meteosat imagery West Africa dust storm

Spatial, Spectral & Temporal Resolution

Spatial, Spectral & Temporal Resolution

Questions & Discussion