Krausmann & Fischer-Kowalski | ISIE Lisbon | The metabolic scale of the world economy in the past century Fridolin Krausmann, Marina Fischer-Kowalski Julia Steinberger and Nina Eisenmenger
Krausmann & Fischer-Kowalski | ISIE Lisbon | Global metabolic scale Metabolic rates Global convergence scenarios Resource productivity Overview
Krausmann & Fischer-Kowalski | ISIE Lisbon | Global materials extraction = use (DMC) 1900 to 2005
Krausmann & Fischer-Kowalski | ISIE Lisbon | Global materials extraction (DE = DMC at the global scale) is based on statistical data and modelling. All applied models are based on biophysical input data only (livestock, metal production, cement production and consumption). Conservative estimate which underestimates the use of construction minerals. Data base
Krausmann & Fischer-Kowalski | ISIE Lisbon | Global material extraction database Material typeContentSource Biomass165 primary crops incl. used crop residues (<50 crops) Roughage and grazed biomass (12 items) Wood harvest FAO and predecessors; used crop residues (model); grazed biomass (model); wood harvest (FAO, various estimates) Fossil energy carriersHard and soft coal, petroleum, natural gas, peat Podobnik 1995, United Nations 1950, IEA 2007 Ores44 ores (gross ore)Metal content: USGS 2008 Gross ores: estimate Non metallic minerals33 non-metallic mineralsUSGS 2008 Construction mineralsLimestone for cement production, sand and gravel for construction Conservative estimate; based on cement production; concrete production and asphalt production
Krausmann & Fischer-Kowalski | ISIE Lisbon | Metabolic scale: Global materials use 1900 to 2005
Krausmann & Fischer-Kowalski | ISIE Lisbon | Metabolic scale: Global materials use 1900 to 2005
Krausmann & Fischer-Kowalski | ISIE Lisbon | Metabolic scale (structure): Global materials use 1900 to 2005
Krausmann & Fischer-Kowalski | ISIE Lisbon | Metabolic scale: Global primary energy supply
Krausmann & Fischer-Kowalski | ISIE Lisbon | Periods of growth: Average annual growth rates (DMC, GDP, population)
Krausmann & Fischer-Kowalski | ISIE Lisbon | Metabolic scale Definition: metabolic scale is the size of the overall annual material (DMC) or primary energy input (TPES, DEC) of a socio-economic system, measured according to established standards of MEFA analysis. The metabolic scale of the world economy has been increasing by one order of magnitude during the last century: –Materials use: From 7 billion tons to over 60 bio t (DMC, all materials). –Energy use: From 44 EJ primary energy to 480 EJ (TPES, commercial energy only).
Krausmann & Fischer-Kowalski | ISIE Lisbon | Metabolic rate Definition: Metabolic rate is the metabolic scale of a socio-economic system divided by its population number = annual material / energy use per capita It represents the biophysical burden associated to an average individual The global metabolic rate: Moderate growth from 1900 to 1945 (0.2%); Rapid growth from 1945 to 1973 (1.6%); Stabilization from 1973 to 2000 (0.6%) despite substantial economic growth; 8t/cap (DMC) and 60 GJ/cap (TPES). Since 2000: a new phase of growth (3.7%) can be observed.
Krausmann & Fischer-Kowalski | ISIE Lisbon | Metabolic rates: Material and energy use per capita Energy Materials
Krausmann & Fischer-Kowalski | ISIE Lisbon | National trends: metabolic scale (DMC) Global India: 8% of global Brazil: 4% of global USA: 15% of global Sources: USA: Gierlinger 2009 Brazil: Mayer 2009 India: Lanz 2009
Krausmann & Fischer-Kowalski | ISIE Lisbon | National trends: metabolic rates Global India Brazil USA Sources: USA: Gierlinger 2009 Brazil: Mayer 2009 India: Lanz 2009
Krausmann & Fischer-Kowalski | ISIE Lisbon | Metabolic rate vs. income (GDP/cap): R 2 = 0.64 N = 175 countries Year 2000
Krausmann & Fischer-Kowalski | ISIE Lisbon | Metabolic rates by development status and population density DMC t/cap in yr 2000 Share of world population Pop density 13% 123 6% 12 62% 140 6% 19
Krausmann & Fischer-Kowalski | ISIE Lisbon | Scenario assumptions (all : relation between high density/low density countries remains unchanged; population growth by UN projection) 1.Baseline 2000 scenario 2.Freeze and catching up: industrial countries maintain their metabolic rates of the year 2000, developing countries catch up to same rates 3.Factor 2 and catching up: industrial countries reduce their metabolic rates by factor 2, developing countries catch up 4.Freeze global DMC: global resource consumption by the year 2000 remains constant by 2050, industrial and developing countries settle for identical metabolic rates
Krausmann & Fischer-Kowalski | ISIE Lisbon | Global metabolic rates in t/cap Global convergence scenarios Global metabolic scales in billion tonnes
Krausmann & Fischer-Kowalski | ISIE Lisbon | Global convergence scenarios Global metabolic rates in t/cap Global metabolic scales in billion tonnes
Krausmann & Fischer-Kowalski | ISIE Lisbon | Resource productivity: GDP per unit of materials and energy input
Krausmann & Fischer-Kowalski | ISIE Lisbon | Resource productivity: GDP per unit of materials input (biomass/minerals) Biomass Minerals
Krausmann & Fischer-Kowalski | ISIE Lisbon | Thank you for your attention! Data download: Publications: –Krausmann, F., Gingrich, S., Eisenmenger, N., Erb, K.H., Haberl, H., Fischer- Kowalski, M Growth in global materials use, GDP and population during the 20th century, Ecological Economics (in press). –Krausmann, F., M. Fischer-Kowalski, H. Schandl, and N. Eisenmenger The global socio-metabolic transition: past and present metabolic profiles and their future trajectories. Journal of Industrial Ecology 12(5/6),