An optically pumped spin-exchange polarized electron source Munir Pirbhai.

Slides:



Advertisements
Similar presentations
Drew Rotunno Mentor: Dr. Itzik Ben-Itzhak, Bethany Joachim Bethany Joachim.
Advertisements

1 First Measurement of the Structure Function b 1 on Tensor Polarized Deuteron Target at HERMES A.Nagaitsev Joint Institute for Nuclear Research, Dubna.
First Year Seminar: Strontium Project
Drift velocity Adding polyatomic molecules (e.g. CH4 or CO2) to noble gases reduces electron instantaneous velocity; this cools electrons to a region where.
A Proposal of a Polarized 3 He ++ Ion Source with Penning Ionizer for JINR N.N. Agapov, Yu.N. Filatov, V.V. Fimushkin, L.V. Kutuzova, V.A. Mikhailov, Yu.A.
OPOLEOpole University Institute of Physics, Plasma Spectroscopy Group I am from.. 1.
Patricia Aguar Bartolomé Institut für Kernphysik, Universität Mainz PSTP 2013 Workshop, Charlottesville 11th September 2013.
Langmuir’s Paradox: Can Ion instability at sheath-edge thermalize the ions too? Chi-Shung Yip Noah Hershkowitz
 University of Wisconsin – Madison Greg.
2. High-order harmonic generation in gases Attosecond pulse generation 1. Introduction to nonlinear optics.
Faraday Rotation Theory, Application, and Issues With a neat Tangent Zachary Marshall.
Rydberg physics with cold strontium James Millen Durham University – Atomic & Molecular Physics group.
Graham Lochead YAO 2009 Towards a strontium pyramid MOT Graham Lochead Durham University
Optical study of Spintronics in III-V semiconductors
References Acknowledgements This work is funded by EPSRC 1.R. P. Abel, U. Krohn, P. Siddons, I. G. Hughes & C. S. Adams, Opt Lett (2009). 2.A.
Edit by :- Ala’a Ali Qudah. ID : Advicor :- Dr. Hasan Al-Khateeb. Research Of Spin Polarized Electron (Phys 791). Jordan University of Science.
1 Laser Remote Sensing Optical Receiver & Detection System Laser Probe Gas R = Velocity  time R There can be: absorption, scatter and/ or fluorescence.
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
Experimental Atomic Physics Research in the Budker Group Tests of fundamental symmetries using atomic physics: Parity Time-reversal invariance Permutation.
Photoelectron Spectroscopy Lecture 7 – instrumental details –Photon sources –Experimental resolution and sensitivity –Electron kinetic energy and resolution.
4-1 Chap. 7 (Optical Instruments), Chap. 8 (Optical Atomic Spectroscopy) General design of optical instruments Sources of radiation Selection of wavelength.
Set-up for Levy Flight of Photons in Resonant Atomic Vapor Danielle Citro (SUNY Oswego), Adailton Feliciano (UFPB), Martine Chevrollier (UFPB), Marcos.
AESOP: Accurate Electron Spin Optical Polarimeter Marcy L. Stutzman, Matt Poelker; Jefferson Lab Timothy J. Gay; University of Nebraska.
Electron interactions with CO 2 Bob Merlino Department of Physics and Astronomy The University of Iowa Iowa City, IA U. S. Department of Energy National.
Refining of Liquid Metal by Hydrogen Cold Plasma Shanghai University Weizhong Ding School of Material Science and Engineering Shanghai University.
September 12, 2013 PSTP 2013 G. Atoian a *, V. Klenov b, J. Ritter a, D. Steski a, A. Zelenski a, V. Zubets b a Brookhaven National Laboratory, Upton,
Spin-polarization using ns~fs laser pulses Takashi Nakajima Institute of Advanced Energy Kyoto University
Experiments with Trapped Potassium Atoms Robert Brecha University of Dayton.
Kinetic Investigation of Collision Induced Excitation Transfer in Kr*(4p 5 5p 1 ) + Kr and Kr*(4p 5 5p 1 ) + He Mixtures Md. Humayun Kabir and Michael.
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
Motivation Polarized 3 He gas target Solenoid design and test 3 He feasibility test Summary and outlook Johannes Gutenberg-Universit ä t Mainz Institut.
Polarized GaAs photo cathode development and the preparation of Gatling Gun cathodes at BNL The Single Cathode Activation Chamber.
Atomic, Molecular and Optical Physics Laboratory______________________________ Collisional Depolarization of Zeeman Coherences in the 133 Cs 6p 2 P 3/2.
Introduction Current and proposed linear colliders, energy recovery linacs and light sources require high quality electron sources. In particular, low-emittance.
Polarized 11 Li beam at TRIUMF and its application for spectroscopic study of the daughter nucleus 11 Be 1. Physics motivation new  delayed decay spectroscopy.
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
Magnetization dynamics
Components of the Rubidium Apparatus Magnet: Confines the electron beam to go through the aperture separating the source and target chambers. Probe Laser:
Sunbeds and stars... Ionization, excitation and line spectra.
Frank Hertz Experiment
The Relativistic Heavy Ion Collider high-intensity polarized H - ion source The Relativistic Heavy Ion Collider high-intensity polarized H - ion source.
Applications of polarized neutrons V.R. Skoy Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research Dubna, Moscow Region, Russia.
Toroidal Photoelectron Spectrometer for Coincidence Studies A. Padmanabhan 1, P. A. Thorn 1, L. Zuin 2, M. A. MacDonald 2, T. J. Reddish 1 1 Physics Department,
Refractive Index Enhancement without Absorption N. A. Proite, J. P. Sheehan, J. T. Green, D. E. Sikes, B. E. Unks, and D. D. Yavuz University of Wisconsin,
Detection of Spin-Polarized Electrons:
J. Phys. Chem. Lett., 2010, 1, Introduction Electron transfer (ET) processes and charge transfer (CT) states are involved in photosynthesis utilized.
E-217 FACET users meeting 9/15/14 Ken Marsh. What happens to the experiment when laser fires full power in Lithium? Do we ionize the helium buffer zones?
The polarized target for G E n Gordon D. Cates, Jr. University of Virginia Professor of Physics and Radiology G E n, - October 24, 2003.
Molecular Triplet States: Excitation, Detection, and Dynamics Wilton L. Virgo Kyle L. Bittinger Robert W. Field Collisional Excitation Transfer in the.
Laser-Driven H/D Target at MIT-Bates Ben Clasie Massachusetts Institute of Technology Ben Clasie, Chris Crawford, Dipangkar Dutta, Haiyan Gao, Jason Seely.
September 18, 2006Chiral Dynamics N and 4N Systems and the A y Puzzle Thomas B. Clegg for TUNL Collaborators Faculty: Clegg, Karwowski, Ludwig, Tornow.
Refractive Index Enhancement in Atomic Vapors Deniz Yavuz, Nick Proite, Brett Unks, Tyler Green, Dan Sikes Department of Physics, University of Wisconsin.
PST05, November 14-17, 2005 at Tokyo 1 Design of a polarized 6 Li 3+ ion source and its feasibility test A. Tamii Research Center for Nuclear Physics,
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Polarization Measurement for Npdgamma at the SNS M. Jon Dadras.
SONA Transition Optimization in the Brookhaven OPPIS A. Kponou, A. Zelenski, S. Kokhanovski, V. Zubets & T. Lehn B. N. L.
Transverse Measurements of Polarization in Optically-Pumped Rb Vapor Cells J.M. Dreiling 1, E.B. Norrgard 1 *, D. Tupa 2, and T.J. Gay 1 1 University of.
J.S. Colton, Universal scheme for opt.-detected T 1 measurements Universal scheme for optically- detected T 1 measurements (…and application to an n =
R Wyllie, R Wakai, T G Walker University of Wisconsin, Madison Spin-Exchange Relaxation Free Heart signal frequency spectrum from DC-100Hz Adult heart.
RHIC polarized source upgrade. A.Zelenski, BNL. Workshop on high–energy spin physics, IHEP, Protvino, September 1983 Workshop on high–energy spin physics,
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
When circularly-polarized light with near- bandgap energy illuminates a negative electron affinity (NEA) GaAs photocathode, spin-polarized electrons are.
Laser activities at University of Pavia in support to SPES project Daniele Scarpa.
Multi-step and Multi-photon Excitation Studies of Group-IIB Elements
Many-Body Effects in a Frozen Rydberg Gas Feng zhigang
JLEIC ion source: specifications, design, and R&D prospects
Polarized Positrons at Jefferson Lab
First Results from the K-State MOTRIMS Experiment
Components of the Rubidium Apparatus
OBSERVATION OF LEVEL-SPECIFIC PREDISSOCIATION RATES IN S1 ACETYLENE
Presentation transcript:

An optically pumped spin-exchange polarized electron source Munir Pirbhai

Wanted: a “push-button” polarized electron source Desired characteristics:  Operates with less stringent vacuum requirements.  Less susceptible to contaminants.

Source Target (bromocamphor) Example of an atomic physics “table-top” experiment: Electron circular dichroism J. M. Dreiling, private communication.

An idea for producing polarized electrons P. S. Farago and H. Siegmann, Phys. Lett. 20, 279 (1966). R. Krisciokaitis-Krisst et al., Nucl. Instrum. Methods 118, 157 (1974). H.Batelaan et al., Phys. Rev. Lett. 82, 4216 (1999). C.Bahrim et al., Phys. Rev. A 63, (2001).

Working of the optically ‐ pumped spin ‐ exchange polarized electron source Pump laser Unpolarized electrons Rb atoms Polarized electrons + buffer gas

 Minimizes diffusion  Mitigates radiation trapping  Thermalizes electrons  Increases electron effective path length Role of buffer gas H.Batelaan et al., Phys. Rev. Lett. 82, 4216 (1999).

Schematic of apparatus A) tungsten filament; B) collision cell; C) differential pumping chamber; D) retractable electron collector; E) electron polarimeter; F) optical polarimeter; G) Faraday cup 10cm

Optical layout Pump laser (795nm) M M LPQWP Probe laser M LP ND Photodiode

Apparatus 10cm

Source: collision cell/electron gun Collision cell Rb reservoir Gas inlet Pressure gauge Filament

Optical electron polarimeter A) entrance; B) target-gas-feed capillary; C) mounting sleeve; D) optical polarimeter; E) chamber housing electron collector and viewport; F) main vacuum chamber; G) fluorescence collection lens; H) energy-defining cylinder T.J.Gay, J. Phys. B 16, L553 (1983). M.Pirbhai et al., Rev. Sci. Instrum. 84, (2013).

Electron optical polarimeter Earlier optical polarimeters ~ This device with argon gas ~ High efficiency Mott ~ 10 -4

Experiments  Electron-spin reversal phenomenon  Different buffer gases  Dependence on incident electron energy

Electron-spin reversal E.B.Norrgard, D.Tupa, J.M.Dreiling, T.J.Gay, Phys. Rev. A 82, (2010).

Experiment 1: Electronic spin reversal 87 Rb 2→1 2→2 87 Rb 1→1 1→2 85 Rb 3→2 3→3 85 Rb 2→2 2→3 + F = 3 I = 5/2 S = 1/2 I F S

Experiment 1: Electronic spin reversal 87 Rb 2→1 2→2 87 Rb 1→1 1→2 85 Rb 3→2 3→3 85 Rb 2→2 2→3 + F = 2 I = 5/2 S = 1/2 I F S

Experiment 1: electron-spin reversal 87 Rb 2→1 2→2 87 Rb 1→1 1→2 85 Rb 3→2 3→3 85 Rb 2→2 2→3

Experiment 1: two ways to reverse beam polarization  Optical helicity  Pump wavelength detuning

Different buffer gases:  He  H 2  N 2  C 2 H 4 E i ~2eV E i ~4eV

Experiment 2: performance with different buffer gases P e ~24%; I~4μA GaAs source on ECD experiment

Experiment 2: characteristics of the different buffer gases Gas Quenching cross-section (Å 2 ) Ethylene139 Helium ˂˂ 1 Hydrogen6 Nitrogen58 W.Happer, Rev. Mod. Phys. 44, 169, (1972). J.M.Warman and M.C.Sauer, J. Chem. Phys. 62, 1971 (1975).

Energy dependence of P e

Experiment 3: dependence of P e on electron energy

Experiment 3: temporary negative ion formation G.J.Schulz, Phys. Rev. 116, 1141 (1959).

Experiment 3: electronic excitation A. Bogaerts, Spectrochim. Acta Part B 64, 129 (2009).

Experiment 3: ionization Y.Itikawa, J. Phys. Chem. Ref. Data 35, 31 (2006).

Experiment 3: retarding field analysis C. B. Opal et al., J. Chem. Phys. 55, 4100 (1971). No gasWith gas

Future improvements  Repump laser  Benzene as buffer gas  Higher buffer gas pressure  Rubidium dispensers R.G.W.Norrish and W.MacF.Smith, Proc.Roy.Soc.London A176, 295 (1940).

Timothy J. Gay Paul D. Burrow Dale Tupa (LANL) Eric T. Litaker Jonah Knepper Herman Batelaan Praise the bridge that carried you over. — George Colman

Experiment 1: Rubidium D1 transitions D nm THz (72%) (28%) P. Siddons et al., J. Phys. B 41, (2008)