INVERSE FUNCTIONS.

Slides:



Advertisements
Similar presentations
Equations in Quadratic Form
Advertisements

< < < > > >         . There are two kinds of notation for graphs of inequalities: open circle or filled in circle notation and interval notation.
Operations on Functions
Parallel and Perpendicular Lines. Gradient-Intercept Form Useful for graphing since m is the gradient and b is the y- intercept Point-Gradient Form Use.
LINES. gradient The gradient or gradient of a line is a number that tells us how “steep” the line is and which direction it goes. If you move along the.
If a > 0 the parabola opens up and the larger the a value the “narrower” the graph and the smaller the a value the “wider” the graph. If a < 0 the parabola.
Let's find the distance between two points. So the distance from (-6,4) to (1,4) is 7. If the.
SETS A = {1, 3, 2, 5} n(A) = | A | = 4 Sets use “curly” brackets The number of elements in Set A is 4 Sets are denoted by Capital letters 3 is an element.
DOUBLE-ANGLE AND HALF-ANGLE FORMULAS
(r,  ). You are familiar with plotting with a rectangular coordinate system. We are going to look at a new coordinate system called the polar coordinate.
SOLVING LINEAR EQUATIONS. If we have a linear equation we can “manipulate” it to get it in this form. We just need to make sure that whatever we do preserves.
You walk directly east from your house one block. How far from your house are you? 1 block You walk directly west from your house one block. How far from.
Logarithmic Functions. y = log a x if and only if x = a y The logarithmic function to the base a, where a > 0 and a  1 is defined: exponential form logarithmic.
The definition of the product of two vectors is: 1 This is called the dot product. Notice the answer is just a number NOT a vector.
Dividing Polynomials.
exponential functions
GEOMETRIC SEQUENCES These are sequences where the ratio of successive terms of a sequence is always the same number. This number is called the common ratio.
VECTORS. A vector is a quantity that has both magnitude and direction. It is represented by an arrow. The length of the vector represents the magnitude.
The standard form of the equation of a circle with its center at the origin is Notice that both the x and y terms are squared. Linear equations don’t.
ARITHMETIC SEQUENCES These are sequences where the difference between successive terms of a sequence is always the same number. This number is called the.
LINEAR Linear programming techniques are used to solve a wide variety of problems, such as optimising airline scheduling and establishing telephone lines.
Properties of Logarithms
Inverse Functions Objectives
5/16/14 OBJ: SWBAT graph and recognize exponential functions. Bell Ringer: Start notes for Exponential functions Homework Requests: pg 246 #1-29 odds.
Logarithmic and Exponential Equations. Steps for Solving a Logarithmic Equation If the log is in more than one term, use log properties to condense Re-write.
INVERSE FUNCTIONS Section 3.3. Set X Set Y Remember we talked about functions--- taking a set X and mapping into a Set Y An inverse.
Library of Functions You should be familiar with the shapes of these basic functions. We'll learn them in this section.
SEQUENCES A sequence is a function whose domain in the set of positive integers. So if I gave you a function but limited the domain to the set of positive.
11.3 Powers of Complex Numbers, DeMoivre's Theorem Objective To use De Moivre’s theorem to find powers of complex numbers.
COMPLEX Z R O S. Complex zeros or roots of a polynomial could result from one of two types of factors: Type 1 Type 2 Notice that with either type, the.
Sum and Difference Formulas. Often you will have the cosine of the sum or difference of two angles. We are going to use formulas for this to express in.
Solving Quadratics and Exact Values. Solving Quadratic Equations by Factoring Let's solve the equation First you need to get it in what we call "quadratic.
Surd or Radical Equations. To solve an equation with a surd First isolate the surd This means to get any terms not under the square root on the other.
INVERSE FUNCTIONS. Set X Set Y Remember we talked about functions--- taking a set X and mapping into a Set Y An inverse function.
COMPOSITION OF FUNCTIONS “SUBSTITUTING ONE FUNCTION INTO ANOTHER”
Warm Up! Complete the square Quadratic Functions and Models.
Remainder and Factor Theorems. REMAINDER THEOREM Let f be a polynomial function. If f (x) is divided by x – c, then the remainder is f (c). Let’s look.
Dividing Polynomials Using Synthetic Division. List all coefficients (numbers in front of x's) and the constant along the top. If a term is missing, put.
INTRODUCING PROBABILITY. This is denoted with an S and is a set whose elements are all the possibilities that can occur A probability model has two components:
The sum f + g This just says that to find the sum of two functions, add them together. You should simplify by finding like terms. Combine like terms &
Let's just run through the basics. x axis y axis origin Quadrant I where both x and y are positive Quadrant II where x is negative and y is positive Quadrant.
We’ve already graphed equations. We can graph functions in the same way. The thing to remember is that on the graph the f(x) or function value is the.
The sum f + g This just says that to find the sum of two functions, add them together. You should simplify by finding like terms. Combine like terms &
INVERSE FUNCTIONS. Set X Set Y Remember we talked about functions--- taking a set X and mapping into a Set Y An inverse function.
1.6 Inverse Functions. Objectives Find inverse functions informally and verify that two functions are inverse functions of each other. Determine from.
(r,  ). You are familiar with plotting with a rectangular coordinate system. We are going to look at a new coordinate system called the polar coordinate.
10-7 (r, ).
Systems of Inequalities.
RATIONAL FUNCTIONS II GRAPHING RATIONAL FUNCTIONS.
THE DOT PRODUCT.
INVERSE Functions and their GRAPHS
Relations And Functions.
INVERSE FUNCTIONS.
Warm-up: Given f(x) = 2x3 + 5 and g(x) = x2 – 3 Find (f ° g)(x)
(r, ).
Graphing Techniques: Transformations Transformations Transformations
INVERSE FUNCTIONS.
INVERSE FUNCTIONS.
BellWork.
Operations on Functions
Section 1.8 INVERSE FUNCTIONS.
INVERSE FUNCTIONS Chapter 1.5 page 120.
INVERSE FUNCTIONS After learning this topic you will be able… to recognize from the graph of a function whether the function has an inverse; to.
INVERSE FUNCTIONS.
Graphing Techniques: Transformations Transformations: Review
Symmetric about the y axis
exponential functions
Operations on Functions
Symmetric about the y axis
Graphing Techniques: Transformations Transformations: Review
Presentation transcript:

INVERSE FUNCTIONS

Remember we talked about functions---taking a set X and mapping into a Set Y 1 2 3 4 5 10 8 6 1 2 2 4 3 6 4 8 10 5 Set X Set Y An inverse function would reverse that process and map from SetY back into Set X

If we map what we get out of the function back, we won’t always have a function going back. 1 2 2 4 3 6 4 8 5 Since going back, 6 goes back to both 3 and 5, the mapping going back is NOT a function These functions are called many-to-one functions Only functions that pair the y value (value in the range) with only one x will be functions going back the other way. These functions are called one-to-one functions.

This would not be a one-to-one function because to be one-to-one, each y would only be used once with an x. 1 2 3 4 5 10 8 6 1 2 2 4 3 6 4 8 5 10 This is a function IS one-to-one. Each x is paired with only one y and each y is paired with only one x Only one-to-one functions will have inverse functions, meaning the mapping back to the original values is also a function.

Recall that to determine by the graph if an equation is a function, we have the vertical line test. If a vertical line intersects the graph of an equation more than one time, the equation graphed is NOT a function. This is NOT a function This is a function This is a function

This is a many-to-one function This then IS a one-to-one function To be a one-to-one function, each y value could only be paired with one x. Let’s look at a couple of graphs. Look at a y value (for example y = 3)and see if there is only one x value on the graph for it. For any y value, a horizontal line will only intersection the graph once so will only have one x value This is a many-to-one function This then IS a one-to-one function

This is NOT a one-to-one function This is NOT a one-to-one function If a horizontal line intersects the graph of an equation more than one time, the equation graphed is NOT a one-to-one function and will NOT have an inverse function. This is NOT a one-to-one function This is NOT a one-to-one function This is a one-to-one function

Let’s consider the function and compute some values and graph them. Notice that the x and y values traded places for the function and its inverse. These functions are reflections of each other about the line y = x Let’s consider the function and compute some values and graph them. This means “inverse function” x f (x) (2,8) -2 -8 -1 -1 0 0 1 1 2 8 (8,2) x f -1(x) -8 -2 -1 -1 0 0 1 1 8 2 Let’s take the values we got out of the function and put them into the inverse function and plot them (-8,-2) (-2,-8) Yes, so it will have an inverse function Is this a one-to-one function? What will “undo” a cube? A cube root

So geometrically if a function and its inverse are graphed, they are reflections about the line y = x and the x and y values have traded places. The domain of the function is the range of the inverse. The range of the function is the domain of the inverse. Also if we start with an x and put it in the function and put the result in the inverse function, we are back where we started from. Given two functions, we can then tell if they are inverses of each other if we plug one into the other and it “undoes” the function. Remember subbing one function in the other was the composition function. So if f and g are inverse functions, their composition would simply give x back. For inverse functions then:

Verify that the functions f and g are inverses of each other. If we graph (x - 2)2 it is a parabola shifted right 2. Is this a one-to-one function? This would not be one-to-one but they restricted the domain and are only taking the function where x is greater than or equal to 2 so we will have a one-to-one function.

Verify that the functions f and g are inverses of each other. Since both of these = x, if you start with x and apply the functions they “undo” each other and are inverses.

Steps for Finding the Inverse of a One-to-One Function y = f -1(x) Solve for y Trade x and y places Replace f(x) with y

Let’s check this by doing Find the inverse of y = f -1(x) or Solve for y Trade x and y places Yes! Replace f(x) with y Ensure f(x) is one to one first. Domain may need to be restricted.

Acknowledgement I wish to thank Shawna Haider from Salt Lake Community College, Utah USA for her hard work in creating this PowerPoint. www.slcc.edu Shawna has kindly given permission for this resource to be downloaded from www.mathxtc.com and for it to be modified to suit the Western Australian Mathematics Curriculum. Stephen Corcoran Head of Mathematics St Stephen’s School – Carramar www.ststephens.wa.edu.au