Parity Violation in Electron Scattering Emlyn Hughes SLAC DOE Review June 2, 2004 *SLAC E122 *SLAC E158 *FUTURE
Polarized Electron Scattering e- unpolarized quarks or electrons or protons Parity conserving Parity violating
Electroweak Mixing Angle e = g sin w Characterizes the mixing between the weak and EM interaction in the electroweak theory sin 2 w = 1 - MwMw MzMz 2 2
SLAC Parity Experiments e- Target (unpolarized) High Energy Detector A PV = - + Parity-violating asymmetry RL RL
End Station A
SLAC E122
Detector e 16 – 22 GeV Liquid Deuterium GaAs source High current 30 cm target Dedicated run
Reversed every few runs 120 Hz
SLAC E122 waveplate reversal
Parity-violating asymmetry SLAC E122 waveplate reversal
SLAC E122 Energy Scan Parity-violating asymmetry
SLAC E122 Result sin 2 w = First definitive measurement of mixing between the weak and electromagnetic interaction (1978)
Atomic Parity Violation Bismuth
Atomic Parity Violation Bismuth
Atomic Parity Violation Bismuth
Atomic Parity Violation Bismuth E122
LEP and SLC e + e - collider sin 2 w = (PDG2002)from Z pole measurements TODAY...
Q (GeV) sin 2 w Status in 1999 ~5%
SLAC Experiment E158 Detector e 50 GeV Liquid Hydrogen A PV = - + Without electroweak radiative corrections, In practice: A PV ~1.5 x (3 + cos ) sin 2 A PV = 1 4 sin 2 w () m E G F e-e- scattering
UC Berkeley Caltech Jefferson Lab Princeton Saclay SLAC Smith College Syracuse UMass Virginia 7 Ph.D. Students 60 physicists Sept 97: EPAC approval : Design and Beam Tests 2000: Funding and construction 2001: Engineering run 2002: Physics Runs 1 (Spring), 2 (Fall) 2003: Physics Run 3 (Summer) E158 Collaboration
Challenges I. Statistics II. Beam monitoring & resolution III.Beam systematics IV.Backgrounds jitter vs. statistics false asymmetries
Spectrometer magnets Concrete shielding target Detector cart Setup in End Station A
STATISTICS # electrons per pulse10 7 Rep rate (120 Hz)10 9 Seconds/day days10 16 A ~ 10 -8
II. BEAM MONITORING
Agreement (MeV) toroid 30 ppm BPM 2 microns energy 1 MeV BPM24 X (MeV) BPM12 X (MeV) Resolution 1.05 MeV Beam Monitoring Correlations
III. Beam Asymmetries Polarized source
SLOW REVERSALS source ~few hours *48 vs. 45 GeV energy ~ few days
A PV vs. time ppb
IV. BACKGROUNDS *electron-proton elastic scattering *pion production *radiative inelastic electron-proton scattering W 2 > 3 GeV 2 *2 photon events with transverse polarization ******
ep Detector Asymmetry
Transversely Polarized Beam
Run 1: Spring 2002 Run 2: Fall 2002 Run 3: Summer 2003 E158 Physics Runs
Run I & II
Run I
A PV = 175 30 (stat) 20 (syst) ppb sin 2 = ± (stat) ± (syst) At Q 2 = (GeV/c) 2 …. w RUN I FINAL RESULT MS sin 2 = ± w MS Theory:
A PV = 160 21 (stat) 17 (syst) ppb sin 2 = ± (stat) ± (syst) At Q 2 = (GeV/c) 2 …. w RUN I & II PRELIMINARY MS sin 2 = ± w MS Theory:
Q (GeV) sin 2 w Status in 1999
Standard Model Cesium Atomic Parity Violation Result vs. Time sin 2 w (Colorado measurement) Modifications in the theoretical corrections to the atomic structure Wieman et al. Bennett Wieman Derevianko Dzuba Flambaum Kozlov Porsev Tupitsyn Johnson Bednyhakov Soff Kuchiev Flambaum 2003
Q (GeV) sin 2 w Status today Run I & II
sin 2 w Q (GeV) Including E158 projections... Run I & II E158 Projected Error bar
Beyond Standard Model Implications... *Limit on LL ~ 7 TeV *Limit on Z ~ 400 GeV *Limit on lepton flavor violating coupling ~ 0.02G F Limits will improve with new data
Future Measurements
LHC Not a parity experiment … Has major impact on precision low energy tests for discovery potential Z’, supersymmetry, compositeness, leptoquarks, etc… in the TeV range
SUMMARY *Performed a first measurement of parity violation in e - e - scattering *Future parity experiments active *Complementary to collider experiments Final results in ~ 1/2 year
Correctionf bkg f bkg ) A corr (ppb) A corr ) (ppb) Beam first order---3 Beam higher orders---10 Beam spotsize--01 Transverse asymmetry---83 High energy photons Synchrotron photons Neutrons ep elastic ep inelastic Pions TOTAL Run I Systematics
Normalization Factor f (f) Dilutions Polarization Analyzing power Linearity Run I Dilutions
Correctionf bkg f bkg ) A corr (ppb) A corr ) (ppb) Beam first order---3 Beam higher orders---15 Beam spotsize--01 Transverse asymmetry---53 High energy photons Synchrotron photons Neutrons ep elastic ep inelastic Pions TOTAL Run II Systematics
Normalization Factor f (f) Dilutions Polarization Analyzing power Linearity Run II Dilutions
A PV (Run I) = -176 30 (stat) 20 (syst) ppb (5 significance) A PV (Run II) = -145 28 (stat) 23 (syst) ppb (4 significance) A PV (Run I+II) = -161 21 (stat) 17 (syst) ppb (6 significance) Asymmetry Results
Standard Model prediction: ± (Czarnecki, Marciano, 2000) sin 2 eff (Run I) = ± (stat) ± (syst) (-1.0 from Standard Model) sin 2 eff (Run II) = ± (stat) ± (syst) (-0.1 from Standard Model) sin 2 eff (Run I) = ± (stat) ± (syst) (-0.8 from Standard Model) Electroweak Mixing Parameter