Exercises Product ( pname, price, category, maker) Purchase (buyer, seller, store, product) Company (cname, stock price, country) Person( per-name, phone.

Slides:



Advertisements
Similar presentations
1 Lecture 5: SQL Schema & Views. 2 Data Definition in SQL So far we have see the Data Manipulation Language, DML Next: Data Definition Language (DDL)
Advertisements

1 Lecture 02: SQL. 2 Outline Data in SQL Simple Queries in SQL (6.1) Queries with more than one relation (6.2) Recomeded reading: Chapter 3, Simple Queries.
SQL Introduction Standard language for querying and manipulating data Structured Query Language Many standards out there: SQL92, SQL2, SQL3. Vendors support.
Relational Algebra (end) SQL April 19 th, Complex Queries Product ( pid, name, price, category, maker-cid) Purchase (buyer-ssn, seller-ssn, store,
COMP 3715 Spring 05. Working with data in a DBMS Any database system must allow user to  Define data Relations Attributes Constraints  Manipulate data.
1 Lecture 12: SQL Friday, October 26, Outline Simple Queries in SQL (5.1) Queries with more than one relation (5.2) Subqueries (5.3) Duplicates.
1 Lecture 03: Advanced SQL. 2 Outline Unions, intersections, differences Subqueries, Aggregations, NULLs Modifying databases, Indexes, Views Reading:
1 Data Definition in SQL So far we have see the Data Manipulation Language, DML Next: Data Definition Language (DDL) Data types: Defines the types. Data.
SQL April 25 th, Agenda Grouping and aggregation Sub-queries Updating the database Views More on views.
1 Lecture 06: SQL Friday, January 14, Outline Indexes Defining Views (6.7) Constraints (Chapter 7) We begin E/R diagrams (Chapter 2)
1 Lecture 05: SQL Wednesday, October 8, Outline Outer joins (6.3.8) Database Modifications (6.5) Defining Relation Schema in SQL (6.6) Indexes.
1 INTERSECT and EXCEPT: (may no be in MySQL) (SELECT R.A, R.B FROM R) INTERSECT (SELECT S.A, S.B FROM S) (SELECT R.A, R.B FROM R) INTERSECT (SELECT S.A,
1 Lecture 03: SQL Friday, January 7, Administrivia Have you logged in IISQLSRV yet ? HAVE YOU CHANGED YOUR PASSWORD ? Homework 1 is now posted.
Naveen Ashish Calit2 & ICS UC Irvine SQL. SQL -- historical Perspective Dr. Edgar Codd (IBM) “A Relational Model of Data for Large Shared Data Banks"
Lecture #4 October 19, 2000 SQL. Administration Exam date officially moved to December 7 th, 6:30pm, here. Homework #3 – will be on the web site tomorrow.
M.P. Johnson, DBMS, Stern/NYU, Spring C : Database Management Systems Lecture #15 M.P. Johnson Stern School of Business, NYU Spring, 2005.
Correlated Queries SELECT title FROM Movie AS Old WHERE year < ANY (SELECT year FROM Movie WHERE title = Old.title); Movie (title, year, director, length)
1 Lecture 3: More SQL Friday, January 9, Agenda Homework #1 on the web site today. Sign up for the mailing list! Next Friday: –In class ‘activity’
Complex Queries (1) Product ( pname, price, category, maker)
One More Normal Form Consider the dependencies: Product Company Company, State Product Is it in BCNF?
Relation Decomposition A, A, … A 12n Given a relation R with attributes Create two relations R1 and R2 with attributes B, B, … B 12m C, C, … C 12l Such.
Integrity Constraints An important functionality of a DBMS is to enable the specification of integrity constraints and to enforce them. Knowledge of integrity.
1 Lecture 4: More SQL Monday, January 13th, 2003.
1 Lecture 7: End of Normal Forms Outerjoins, Schema Creation and Views Wednesday, January 28th, 2004.
SQL (almost end) April 26 th, Agenda HAVING clause Views Modifying views Reusing views.
SQL April 22 th, Agenda Union, intersections Sub-queries Modifying the database Views Modifying views Reusing views.
1 SQL cont.. 2 Outline Unions, intersections, differences (6.2.5, 6.4.2) Subqueries (6.3) Aggregations (6.4.3 – 6.4.6) Hint for reading the textbook:
IM433-Industrial Data Systems Management Lecture 5: SQL.
More SQL: Complex Queries, Triggers, Views, and Schema Modification UMM AL QURA UNIVERSITY College of Computer Dr. Ali Al Najjar 1.
1 Lecture 04: SQL Wednesday, January 11, Outline Two Examples Nulls (6.1.6) Outer joins (6.3.8) Database Modifications (6.5)
1 Lecture 6: Views Friday, January 17th, Updating Views How can I insert a tuple into a table that doesn’t exist? Employee(ssn, name, department,
SQL. SQL Introduction Standard language for querying and manipulating data Structured Query Language Many standards out there: ANSI SQL, SQL92 (a.k.a.
1 Introduction to Database Systems CSE 444 Lecture 04: SQL April 7, 2008.
1 Lecture 5: Outerjoins, Schema Creation and Views Wednesday, January 15th, 2003.
Aggregation SELECT Sum(price) FROM Product WHERE manufacturer=“Toyota” SQL supports several aggregation operations: SUM, MIN, MAX, AVG, COUNT Except COUNT,
1 Lecture 03: SQL Monday, January 9, Project t/Default.aspxhttp://iisqlsrv.cs.washington.edu/444/Projec.
1 Lecture 06 Data Modeling: E/R Diagrams Wednesday, January 18, 2006.
1 Lecture 05: SQL Wednesday, October 8, Outline Database Modifications (6.5) Defining Relation Schema in SQL (6.6) Indexes Defining Views (6.7)
SQL. SQL Introduction Standard language for querying and manipulating data Structured Query Language Many standards out there: ANSI SQL, SQL92 (a.k.a.
Slide Chapter 8 Views تنبيه : شرائح العرض (Slides) هي وسيلة لتوضيح الدرس واداة من الادوات في ذلك. حيث المرجع الاساسي للمادة هي الكتاب المعتمد في.
SQL.
Lecture 05: SQL Wednesday, January 12, 2005.
Cours 7: Advanced SQL.
Lecture 04: SQL Monday, January 10, 2005.
Relational Algebra at a Glance
Modifying the Database
Database Systems Subqueries, Aggregation
Server-Side Application and Data Management IT IS 3105 (FALL 2009)
Introduction to Database Systems CSE 444 Lecture 04: SQL
Introduction to Database Systems CSE 444 Lecture 03: SQL
Introduction to SQL Wenhao Zhang October 5, 2018.
Introduction to Database Systems CSE 444 Lecture 03: SQL
Building a Database Application
SQL Introduction Standard language for querying and manipulating data
SQL.
Lecture 12: SQL Friday, October 20, 2000.
Where are we? Until now: Modeling databases (ODL, E/R): all about the schema Now: Manipulating the data: queries, updates, SQL Then: looking inside -
Lecture 4: SQL Thursday, January 11, 2001.
Lectures 6: Introduction to SQL 5
Integrity Constraints
Lecture 3 Monday, April 8, 2002.
Lecture 06: SQL Monday, October 11, 2004.
Lecture 4: SQL Wednesday, April 10, 2002.
Lecture 03: SQL Friday, October 3, 2003.
Syllabus Introduction Website Management Systems
CSE544 SQL Monday, April 5, 2004.
Lecture 04: SQL Monday, October 6, 2003.
Lecture 05: SQL Wednesday, October 9, 2002.
Lecture 14: SQL Wednesday, October 31, 2001.
Presentation transcript:

Exercises Product ( pname, price, category, maker) Purchase (buyer, seller, store, product) Company (cname, stock price, country) Person( per-name, phone number, city) Ex #1: Find people who bought telephony products. Ex #2: Find names of people who bought American products Ex #3: Find names of people who bought American products and did not buy French products Ex #4: Find names of people who bought American products and they live in Seattle. Ex #5: Find people who bought stuff from Joe or bought products from a company whose stock prices is more than $50.

Grouping and Aggregation Example 1: find total sales for the entire database

Simple Aggregation SELECT Sum(price * quantity) FROM Purchase SELECT Sum(price * quantity) FROM Purchase WHERE product = ‘bagel’ SQL supports several aggregation operations: SUM, MIN, MAX, AVG, COUNT Except COUNT, all aggregations apply to a single attribute

Grouping and Aggregation Example 2: find total sales per product.

Solution: Two Steps Example 2: find total sales per product. First: group the entries by product.

Then, aggregate SELECT product, Sum(price * quantity) AS TotalSales FROM Purchase GROUP BY product

Another Example SELECT product, Sum(price * quantity) AS SumSales Max(quantity) AS MaxQuantity FROM Purchase GROUP BY product For every product, what is the total sales and max quantity sold?

Grouping and Aggregation: Summary SELECT product, Sum(price) FROM Product, Purchase WHERE Product.name = Purchase.product GROUP BY Product.name 1. Compute the relation (I.e., the FROM and WHERE). 2. Group by the attributes in the GROUP BY 3. Select one tuple for every group (and apply aggregation) SELECT can have (1) grouped attributes or (2) aggregates.

HAVING Clause SELECT product, Sum(price * quantity) FROM Purchase GROUP BY product HAVING Sum(quantity) > 30 Same query, except that we consider only products that had at least 100 buyers. HAVING clause contains conditions on aggregates.

Modifying the Database We have 3 kinds of modifications: insertion, deletion, update. Insertion: general form -- INSERT INTO R(A1,…., An) VALUES (v1,…., vn) Insert a new purchase to the database: INSERT INTO Purchase(buyer, seller, product, store) VALUES (Joe, Fred, wakeup-clock-espresso-machine, ‘The Sharper Image’) If we don’t provide all the attributes of R, they will be filled with NULL. We can drop the attribute names if we’re providing all of them in order.

More Interesting Insertions INSERT INTO PRODUCT(name) SELECT DISTINCT product FROM Purchase WHERE product NOT IN (SELECT name FROM Product) The query replaces the VALUES keyword. Note the order of querying and inserting.

Deletions DELETE FROM PURCHASE WHERE seller = ‘Joe’ AND product = ‘Brooklyn Bridge’ Factoid about SQL: there is no way to delete only a single occurrence of a tuple that appears twice in a relation.

Updates UPDATE PRODUCT SET price = price/2 WHERE Product.name IN (SELECT product FROM Sales WHERE Date = today);

Data Definition in SQL So far, SQL operations on the data. Data definition: defining the schema. Create tables Delete tables Modify table schema But first: Define data types. Finally: define indexes.

Data Types in SQL Character strings (fixed of varying length) Bit strings (fixed or varying length) Integer (SHORTINT) Floating point Dates and times Domains will be used in table declarations. To reuse domains: CREATE DOMAIN address AS VARCHAR(55)

Creating Tables CREATE TABLE Person( name VARCHAR(30), social-security-number INTEGER, age SHORTINT, city VARCHAR(30), gender BIT(1), Birthdate DATE );

Deleting or Modifying a Table Deleting: DROP Person; Altering: ALTER TABLE Person ADD phone CHAR(16); ALTER TABLE Person DROP age;

Default Values The default of defaults: NULL Specifying default values: CREATE TABLE Person( name VARCHAR(30), social-security-number INTEGER, age SHORTINT DEFAULT 100, city VARCHAR(30) DEFAULT ‘Seattle’, gender CHAR(1) DEFAULT ‘?’, Birthdate DATE

Indexes REALLY important to speed up query processing time. Suppose we have a relation Person (name, social security number, age, city) An index on “social security number” enables us to fetch a tuple for a given ssn very efficiently (not have to scan the whole relation). The problem of deciding which indexes to put on the relations is very hard! (it’s called: physical database design).

Creating Indexes CREATE INDEX ssnIndex ON Person(social-security-number) Indexes can be created on more than one attribute: CREATE INDEX doubleindex ON Person (name, social-security-number) Why not create indexes on everything?

Defining Views Views are relations, except that they are not physically stored. They are used mostly in order to simplify complex queries and to define conceptually different views of the database to different classes of users. View: purchases of telephony products: CREATE VIEW telephony-purchases AS SELECT product, buyer, seller, store FROM Purchase, Product WHERE Purchase.product = Product.name AND Product.category = ‘telephony’

A Different View CREATE VIEW Seattle-view AS SELECT buyer, seller, product, store FROM Person, Purchase WHERE Person.city = ‘Seattle’ AND Person.name = Purchase.buyer We can later use the views: SELECT name, store FROM Seattle-view, Product WHERE Seattle-view.product = Product.name AND Product.category = ‘shoes’ What’s really happening when we query a view??

Updating Views How can I insert a tuple into a table that doesn’t exist? CREATE VIEW bon-purchase AS SELECT store, seller, product FROM Purchase WHERE store = ‘The Bon Marche’ If we make the following insertion: INSERT INTO bon-purchase VALUES (‘the Bon Marche’, Joe, ‘Denby Mug’) We can simply add a tuple (‘the Bon Marche’, Joe, NULL, ‘Denby Mug’) to relation Purchase.

Non-Updatable Views CREATE VIEW Seattle-view AS SELECT seller, product, store FROM Person, Purchase WHERE Person.city = ‘Seattle’ AND Person.name = Purchase.buyer How can we add the following tuple to the view? (Joe, ‘Shoe Model 12345’, ‘Nine West’)