NET0183 Networks and Communications Lecture 9 Protocol Suites and Layering Models 8/25/20091 NET0183 Networks and Communications by Dr Andy Brooks Lecture.

Slides:



Advertisements
Similar presentations
Exercises and Solutions Lecture 1
Advertisements

NET0183 Networks and Communications Lecture 28 TCP: a transport layer protocol... the story continues... Sagan halda áfram 8/25/20091 NET0183 Networks.
OSI Model OSI MODEL.
OSI Model OSI LAYER / MODEL.
PROTOCOLS SUBMITTED BY : SUDEEP C D ; BSc(CS) Ist Year Ist Sem. T h i s p r e s e n t a t i o n w i l l p r o b a b l y i n v o l v e a u d i e n c e d.
NET0183 Networks and Communications Lecture 23 UDP: a transport layer protocol 8/25/20091 NET0183 Networks and Communications by Dr Andy Brooks Lecture.
Chapter 2 Network Models.
© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.1 Computer Networks and Internets with Internet Applications, 4e By Douglas.
© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.1 Computer Networks and Internets with Internet Applications, 4e By Douglas.
© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.1 Computer Networks and Internets, 5e By Douglas E. Comer Lecture PowerPoints.
© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.1 Computer Networks and Internets with Internet Applications, 4e By Douglas.
© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.1 Computer Networks and Internets with Internet Applications, 4e By Douglas.
© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.1 Computer Networks and Internets with Internet Applications, 4e By Douglas.
Protocols and the TCP/IP Suite
© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.1 Computer Networks and Internets with Internet Applications, 4e By Douglas.
© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.1 Computer Networks and Internets with Internet Applications, 4e By Douglas.
Introduction To Networking
© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.1 Computer Networks and Internets with Internet Applications, 4e By Douglas.
© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.1 Computer Networks and Internets with Internet Applications, 4e By Douglas.
© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved. 1 Computer Networks and Internets, 5e By Douglas E. Comer Lecture PowerPoints.
TCP: Software for Reliable Communication. Spring 2002Computer Networks Applications Internet: a Collection of Disparate Networks Different goals: Speed,
© 2007 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.1 Computer Networks and Internets with Internet Applications, 4e By Douglas.
Chapter 2 Network Models.
OIS Model TCP/IP Model.
SEPT, 2005CSI Part 2.2 Protocols and Protocol Layering Robert Probert, SITE, University of Ottawa.
CECS 474 Computer Network Interoperability Notes for Douglas E. Comer, Computer Networks and Internets (5 th Edition) Tracy Bradley Maples, Ph.D. Computer.
Lecturer: Tamanna Haque Nipa
Protocols and the TCP/IP Suite Chapter 4. Multilayer communication. A series of layers, each built upon the one below it. The purpose of each layer is.
© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.1 Computer Networks and Internets, 5e By Douglas E. Comer Lecture PowerPoints.
Lecture 1 The OSI Model Reference: TCP/IP Protocol Suite, 4 th Edition (chapter 2) 1.
Review: – computer networks – topology: pair-wise connection, point-to-point networks and broadcast networks – switching techniques packet switching and.
Protocol Layering Chapter 10. Looked at: Architectural foundations of internetworking Architectural foundations of internetworking Forwarding of datagrams.
1 Internetworking: Concepts, Architecture, and Protocols.
Internet Addresses. Universal Identifiers Universal Communication Service - Communication system which allows any host to communicate with any other host.
1 Introduction and Internet Applications Chapter 1 Introduction and Overview.
Layer Architecture Layer architecture simplifies the network design. It is easy to debug network applications in a layered architecture network. The network.
1 Chapter 16 Protocols and Protocol Layering. 2 Protocol  Agreement about communication  Specifies  Format of messages (syntax)  Meaning of messages.
NET 221D:Computer Networks Fundamentals
The OSI Model.
Computer Networks Chapter 2 – Network Models. Summer 2006Computer Networks2 Communication Tasks  The tasks given below need to be taken care of in any.
© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.1 Computer Networks and Internets, 5e By Douglas E. Comer Lecture PowerPoints.
Spring 2006Computer Networks1 Chapter 2 Network Models.
INTRODUCTION. A Communications Model Source –generates data to be transmitted Transmitter –Converts data into transmittable signals Transmission System.
TCOM 509 – Internet Protocols (TCP/IP) Lecture 03_b Protocol Layering Instructor: Dr. Li-Chuan Chen Date: 09/15/2003 Based in part upon slides of Prof.
COP 4930 Computer Network Projects Summer C 2004 Prof. Roy B. Levow Lecture 3.
1 Network Model. 1-2 Divide and Conquer A method of managing large system.
© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.1 Computer Networks and Internets, 5e By Douglas E. Comer Lecture PowerPoints.
CHAPTER 4 PROTOCOLS AND THE TCP/IP SUITE Acknowledgement: The Slides Were Provided By Cory Beard, William Stallings For Their Textbook “Wireless Communication.
1 Chapter 4. Protocols and the TCP/IP Suite Wen-Shyang Hwang KUAS EE.
Protocol Suits and Layering Models OSI Model Dr. Abraham UTPA.
Net 221D:Computer Networks Fundamentals
The OSI Model A Framework for Communications David A. Abarca July 19, 2005.
1 Protocols and Protocol Layering. 2 Protocol Agreement about communication Specifies –Format of messages –Meaning of messages –Rules for exchange –Procedures.
TCP/IP Protocol Suite Suresh Kr Sharma 1 The OSI Model and the TCP/IP Protocol Suite Established in 1947, the International Standards Organization (ISO)
Computer Engineering and Networks, College of Engineering, Majmaah University Protocols OSI reference MODEL TCp /ip model Mohammed Saleem Bhat
Chapter 4 : Network models. Lecture 8. Layered Tasks - We use the concept of layers in our daily life. As an example, let us consider 2 friends who communicate.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2000 Lecture 3 : Network Architectures 1.
OSI Model OSI MODEL. Communication Architecture Strategy for connecting host computers and other communicating equipment. Defines necessary elements for.
OSI Model OSI MODEL.
The Concept of Universal Service
COMPUTER NETWORKS and INTERNETS
Lecture PowerPoints By Lami Kaya,
Computer Networks and Internets, 5e By Douglas E. Comer
Lecturer, Department of Computer Application
DEPARTMENT OF COMPUTER SCIENCE
Protocols and the TCP/IP Suite
OSI Model OSI MODEL.
Introduction and Overview
Protocols and the TCP/IP Suite
Computer Networking A Top-Down Approach Featuring the Internet
Presentation transcript:

NET0183 Networks and Communications Lecture 9 Protocol Suites and Layering Models 8/25/20091 NET0183 Networks and Communications by Dr Andy Brooks Lecture powerpoints from the recommended textbook are by Lami Kaya, Lecture powerpoints are © 2009 Pearson Education Inc. Their content has sometimes been edited by Andy Brooks.

8/25/2009 NET0183 Networks and Communications by Dr Andy Brooks 2 The recommended textbook is Computer Networks and Internets by Douglas E. Comer (for additional discounts and offers)

1.3.4 Internetworking with TCP/IP In 1973, Vinton Cerf and Robert Kahn observed that –no single packet switching technology would ever satisfy all needs especially because it would be possible to build low-capacity technologies for homes or offices at extremely low cost They suggested to stop trying to find a single best solution –Instead, explore interconnecting many packet switching technologies into a functioning whole –They proposed a set of standards be developed for such an interconnection –The resulting standards became known as the TCP/IP Internet Protocol Suite (usually abbreviated TCP/IP) The success of TCP/IP lies in its tolerance of heterogeneity TCP / IP takes a virtualization approach –that defines a network-independent packet and a network-independent identification scheme © 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved.3

4 1.5 Networks, Interoperability, and Standards Communication always involves at least two entities –one that sends information and another that receives it All entities in a network must agree on how information will be represented and communicated –Communication agreements involve many details the way that electrical signals are used to represent data procedures used to initiate and conduct communication, and the format of messages An important issue is interoperability –it refers to the ability of two entities to communicate All communicating parties agree on details and follow the same set of rules, an exact set of specifications Communication protocol, network protocol, or simply protocol to refer to a specification for network communication A protocol specifies the details for one aspect of communication –including actions to be taken when errors or unexpected situations arise

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved Protocol Suites and Layering Models A set of protocols must be constructed –to ensure that the resulting communication system is complete and efficient Each protocol should handle a part of communication not handled by other protocols How can we guarantee that protocols work well together? –Instead of creating each protocol in isolation, protocols are designed in complete, cooperative sets called suites or families Each protocol in a suite handles one aspect of networking –The protocols in a suite cover all aspects of communication –The entire suite is designed to allow the protocols to work together efficiently

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved Protocol Suites and Layering Models The fundamental abstraction used to collect protocols into a unified whole is known as a layering model All aspects of a communication problem can be partitioned into pieces that work together –each piece is known as a layer Dividing protocols into layers helps both protocol designers and implementers manage the complexity –to concentrate on one aspect of communication at a given time Figure 1.1 illustrates the concept –by showing the layering model used with the Internet protocols For now, it is sufficient to learn the purpose of each layer and how protocols are used for communication

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved Protocol Suites and Layering Models

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved Protocol Suites and Layering Models Physical Layer (Layer 1) –specify details about the underlying transmission medium and hardware –all specifications related to electrical properties, radio frequencies, and signals belong in layer 1 Network Interface Layer (Layer 2) –some publications use the term Data Link –specify details about communication between higher layers of protocols (implemented in SW) and the underlying network (implemented in hardware) –specifications about network addresses maximum packet size that a network can support protocols used to access the underlying medium and hardware addressing

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved Protocol Suites and Layering Models Internet Layer (Layer 3) –Protocols in the Internet layer form the fundamental basis for the Internet –Layer 3 protocols specify communication across the Internet (spanning multiple interconnected networks) Transport Layer (Layer 4) –Provide for communication from an application program on one computer to an application program on another –Includes specifications on controlling the maximum rate a receiver can accept data mechanisms to avoid network congestion techniques to insure that all data is received in the correct order

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved Protocol Suites and Layering Models Application Layer (Layer 5) –specify how a pair of applications interact when they communicate –specify details about the format and the meaning of messages that applications can exchange the procedures to be followed –Some examples of network applications in layer 5 exchange file transfer web browsing telephone services and video teleconferencing

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved How Data Passes Through Layers Protocol implementations follow the layering model –by passing the output from a protocol in one layer to the input of a protocol in the next To achieve efficiency –rather than copy an entire packet –a pair of protocols in adjacent layers pass a pointer to the packet Figure 1.2 illustrates layered protocols on the two computers –Each computer contains a set of layered protocols –When an application sends data it is placed in a packet, and the packet passes down through each layer of protocols –Once it has passed through all layers of protocols on the sending computer the packet leaves the computer and is transmitted across the physical network –When it reaches the receiving computer the packet passes up through the layers of protocols –If the application on the receiver sends a response, the process is reversed

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved How Data Passes Through Layers

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved Headers and Layers Each layer of protocol software performs computations –that insure the messages arrive as expected To perform such computation, protocol software on the two machines must exchange information –each layer on the sender prepends extra information onto the packet –the corresponding protocol layer on the receiver removes and uses the extra information Additional information added by a protocol is known as a header Headers are added by protocol software on the sending computer –That is, the Transport layer prepends a header, and then the Internet layer prepends a header, and so on If we observe a packet traversing the network, the headers will appear in the order that Figure 1.3 illustrates Although the figure shows headers as the same size –in practice headers are not of uniform size –and a physical layer header is optional

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved Headers and Layers

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved ISO and the OSI Seven-Layer Reference Model At the same time the Internet protocols were being developed, two large standards bodies jointly formed an alternative reference model –They also created a set of internetworking protocols These organizations are: –International Standardization Organization (ISO) –International Telecommunications Union,Telecommunication (ITU-T) The ITU was known as the Consultative Committee for International Telephone and Telegraph (CCITT) The ISO layering model is known as the Open Systems Interconnection (OSI) Seven-Layer Reference Model Figure 1.4 illustrates the seven layers in the model

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved ISO and the OSI Seven-Layer Reference Model

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved The Inside Scoop ISO and the ITU use a process that accommodates as many viewpoints as possible when creating a standard –As a result, some standards can appear to have been designed by a committee making political compromises rather than by engineers and scientists The seven-layer reference model is controversial –It did indeed start as a political compromise the model and the OSI protocols were designed as competitors for the Internet protocols ISO and the ITU are huge standards bodies that handle the world-wide telephone system and other global standards The Internet protocols and reference model were created by a small group of about a dozen researchers –It is easy to see why the standards organizations might be confident that they could dictate a set of protocols and everyone would switch away from protocols designed by researchers –At one point, even the U.S. government was convinced that TCP/IP should be replaced by OSI protocols

© 2009 Pearson Education Inc., Upper Saddle River, NJ. All rights reserved The Inside Scoop Eventually, it became clear that TCP/IP technology was technically superior to OSI –and efforts to develop and deploy OSI protocols were terminated Standards bodies were left with the seven-layer model Advocates for the seven-layer model have tried to stretch the definitions to match TCP/IP They argue that layer three could be considered an Internet layer and that a few support protocols might be placed into layers five and six Perhaps the most humorous part of the story is that many engineers still refer to applications as layer 7 protocols –even when they know that layers five and six are unfilled and unnecessary

19 “Hands-on approach to teaching computer networking using packet traces” by J N Matthews Proceedings of the 6th conference on Information technology education, 2005, pp ©ACM

20 Andy comments: Watch out for different names being used for some of the layers in the Internet protocol stack. Note that there are many kinds of protocol stacks used in the communication industry. The Internet protocol stack is just one of many.