Formic acid: HCOOH Acetone.

Slides:



Advertisements
Similar presentations
The one that is lower in energy is called the bonding orbital, The one higher in energy is called an antibonding orbital. These two.
Advertisements

Chapter 9 Molecular Geometry and Bonding Theories CHEMISTRY The Central Science 9th Edition David P. White.
Chapter 9 Molecular Geometry and Bonding Theories
Problems with Valence Bond Theory
Chapter 9 Molecular Geometries and Bonding Theories.
1 Covalent Bonding: Orbitals Chapter The four bonds around C are of equal length and Energy.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Covalent Bonding: Orbitals Chapter 09.
An amazing thing about the universe - It works in a way that sometimes when things come together, they stick… Sections Sections H H H H.
MO diagram for homonuclear diatomic molecules Li 2 through N 2 MO diagram for homonuclear diatomic molecules O 2 and F 2.
Chapter 101 Bonding and Molecular Structure Chapter 10.
Chemistry 100 Chapter 9 Molecular Geometry and Bonding Theories.
Valence Bond (VB) and Molecular Orbital (MO) Theories
Molecular orbital theory Overcoming the shortcomings of the valence bond.
Chapter 9 Covalent Bonding: Orbitals Hybridization The mixing of atomic orbitals to form special orbitals for bonding. The atoms are responding as needed.
COVALENT BONDING: ORBITALS Chapter 9. Hybridization The mixing of atomic orbitals to form special molecular orbitals for bonding. The atoms are responding.
Molecular Geometry and Bonding Theories 9.1 Molecular Shapes The size and shape of a molecule of a particular substance play an important part in determining.
VSEPR Theory
CHEMISTRY XL-14A MOLECULAR SHAPE AND STRUCTURE
Base Pairing in DNA. Red = O Grey = C White = H Purple = K Ionic Radii Li + = 0.68 Å Na + = 0.97 Å K + = 1.33 Å Rb + = 1.47 Å Cavity Size (O-O Dist.)
Chapter 10: Covalent Bond Theories
Chapter 9 Molecular Shapes -shape of molecule is based on bond angles Valence Shell Electron Pair Repulsion (VSEPR) -based on the idea that electron groups.
CHAPTER 4: MOLECULAR ORBITAL THEORY
Molecular Orbital Theory Electrons in atoms exist in atomic orbitals Electrons in molecules exist in molecular orbitals (MOs) Using Schrödinger equation,
Chapter 9 Covalent Bonding: Orbitals. Chapter 9 Table of Contents 2 Return to TOC Copyright © Cengage Learning. All rights reserved 9.1 Hybridization.
AP CHEMISTRY CHAPTER 9 BONDING 1. Hybridization 2.
Sigma (  ) and pi (π) bonding in C 2 H 4 FIGURE Copyright © 2011 Pearson Canada Inc. General Chemistry: Chapter 11Slide 1 of 57.
Atoms are bonded together by electrons, but what is a bond? A bond forms when two atomic orbitals overlap to make a molecule more stable than when there.
Chapter 9 Covalent Bonding: Orbitals. Schroedinger An atomic orbital is the energy state of an electron bound to an atomic nucleus Energy state changes.
Energy level diagram EA -  EA +  B A .
Chapter 10 Chemical Bonding II. Valence Bond Theory Valence Bond Theory: A quantum mechanical model which shows how electron pairs are shared in a covalent.
MOLECULAR STRUCTURE CHAPTER 14 Experiments show O 2 is paramagnetic.
Covalent Bonding Orbitals Adapted from bobcatchemistry.
Atomic QM to Molecular QM ( ) Solution of SE for molecules is more complicated due to much larger number of electrons and multiple nuclei – SE.
June 10, 2009 – Class 37 and 38 Overview
The Big Picture1 1.The importance of Coulombs Law: Atomic attraction Relative electronegativity Electron repulsion model for shapes of molecules Choice.
1 Chapter 10 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Bonding II: Molecular Geometry and Hybridization.
Molecular Geometries and Bonding Chapter Bonding Theory Valence Bond Theory Molecular Orbital Theory Complete Ch 9 problems # 29, 36, 38, 39, 42,
Molecular Orbital Theory Molecular Orbitals Just as atomic orbitals belong to a particular atom, a molecular orbital belongs to molecules as a whole.
Molecular Modeling. Molecular Modeling: Visualizations & Predictions Numerical Methods Integral Method Semi-Empirical MO-SCF Methods Approximate MO Methods.
1 Chapter 9 Orbitals and Covalent Bond. 2 Molecular Orbitals n The overlap of atomic orbitals from separate atoms makes molecular orbitals n Each molecular.
Molecular Orbitals in Chemical Bonding
Molecular Orbital Theory
Theories of Covalent Bonding
Molecular Orbital Theory Molecular orbital theory describes covalent bonds in terms of molecular orbitals, which result from interaction of the.
Carbon’s valence electrons?. Hybrid Orbitals  Mixing of valence shell orbitals to form new similar orbitals for bonding electrons.
Molecular Orbital Theory Bonding Models: Lewis Structures and VSEPR Valence Bond (VB) or Localized Electron (LE) Theory Molecular Orbital (MO) Theory Bonding.
Quantum Mechanical Description of Molecules Glenn V. Lo Department of Physical Sciences Nicholls State University.
Prentice Hall © 2003Chapter 9 Chapter 9 Molecular Geometry and Bonding Theories CHEMISTRY The Central Science 9th Edition David P. White.
1 Chapter 9 Covalent Bonding n Includes following concepts: –Hybridization & Localized Electron Model, – Molecular Orbital Model, n Sigma and Pi bonds.
Introduction to Molecular Orbital Theory.
1 Molecular Geometry and Hybridization of Atomic Orbitals.
Chapter 9 Bonding II: Molecular Geometry and Bonding Theories
Molecular Orbital Theory
Chapter 10 Chemical Bonding II
Bonding Theories: Valence Bond Theory Molecular Orbital Theory
Molecular Orbital Theory
Chapter 7 Lecture presentation
Molecular Orbital Theory
Chapter 10 Chemical Bonding II
Molecular Orbital Theory
Let’s Focus on Valence Bond Theory
Sigma (s) and Pi Bonds (p)
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 9 Copyright © The McGraw-Hill Companies, Inc.  Permission required.
Molecular Geometry & Bonding Theories
Covalent Bonding: Orbitals
Molecular Orbital Theory
Bonding & Molecular Structure:
DEPARTMENT OF CHEMISTRY
P.G Department of Chemistry Govt. P.G College Rajouri
Presentation transcript:

Formic acid: HCOOH Acetone

Benzene C6H6 Kekulé structures Resonance structures; each point corresponds to a CH Each C is sp2 hybridized, one of the sp2 forming a s-bond with H 1s orbital and the other two forming s-bonds with adjacent C sp2 orbitals.

The un-hybridized p orbital on each C is available for p-bonding with p orbitals on either of the adjacent C atoms

Actual structure of benzene is a resonance hybrid of the two alternating bond patterns; the 6 C atoms are identical, and the electrons in the p-bonds spread around the entire ring This lowers the energy of the molecule - resonance adds stability to a molecule

Characteristics of p bonds bonds Energy of C=C is < 2 x energy of C-C bond Energy of CC is < 3 x energy of C-C bond C, N, O form double bonds with one another and with elements from later periods Double bonds are rarely found between elements in period 3 are below - atoms are too large for effective side-by-side overlap. Molecules with alternate double-single bonds - conjugated molecules

Rotation can occur about a single sigma bond Isomers: Molecules with the same molecular formula but different structures cis-1,2-dichloroethylene trans-1,2-dichloroethylene Rotation can occur about a single sigma bond Rotation is restricted about a double bond; isomers are a consequence

Change of shape triggers a signal along the optic nerve

Molecular Orbital Theory VB theory: localized bond VB theory provides the basis of calculating electron distributions in molecules but cannot explain the properties of some molecules. O2: VB theory O: Is2 2s2 2p4 sp2 hybridized O, one sp2 from each forms s-bond and the other two are occupied with the lone pairs. The un-hybridized p on each forms the p-bond Indicates that in O2 molecule, all electrons are paired. However O2 was observed to be paramagnetic

VB theory assumes that the electrons are localized between the two bonding atoms Molecular orbital theory: electrons are spread throughout the entire molecule; electrons are delocalized over the whole molecule. Pure atomic orbitals combine to produce molecular orbitals that are spread out, delocalized, over an entire molecule Molecular orbitals are built by adding together -superimposing - atomic orbitals belonging to the valence shell of the atoms in the molecules.

H2: wavefunction representing the molecular orbitals (MOs) for H2 can be represented by combining the two atomic orbitals (AOs) for the separated H atoms. Wavefunction of the H2 MO y+ = yA1s + yB1s yA1s or yB1s 1s orbital centered on one of the H atom(A or B) The molecular orbital, y, is a linear combination of atomic orbitals Any molecular orbital formed from a superposition of atomic orbitals is called a LCAO-MO. y+ is a bonding orbital; energy of y+ is lower than that of either AO In H2, the contribution from each AO to the MO is equal

The two AOS are waves centered on different nucleii. Bonding orbital: AO wavefunctions interfere constructively - MO wavefunction in blue.

N AOs overlapping will form N MOs Two H AOs overlapping form two Mos; one of which is the bonding orbital, y+. The wavefunctions of the two H AOs can also interfere destructively - anti-bonding MO of higher energy than each of the AOs y- = yA1s - yB1s Node between two nuclei Probability of finding electrons between nuclei reduced; nuclei repel each other http://www.shef.ac.uk/chemistry/orbitron/index.html

Molecular Orbital Energy Level Diagram Energy of bonding MO < AO Energy of anti-bonding MO > AO

Diatomic Molecules Build all possible MOs from available valence AOs Then accommodate valence electrons in molecular orbitals using the aufbau principles 1) Electrons occupy the lowest energy MOs first, then orbitals of increasing energy 2) Pauli exclusion principle: each orbital can occupy up to two electrons; if two electrons in an orbital must be paired 3) Hund’s rule: if more than one orbital of the same energy is available electrons enter them singly with parallel spinds.

H2 molecular orbital energy-level diagram or correlation diagram Lowest unoccupied MO (LUMO) Highest occupied MO (HOMO) H2 molecular orbital energy-level diagram or correlation diagram Bonding MO - s1s anti-bonding MO s *1s H2 Ground state electron configuration (s1s)2

0.5(number of electrons in bonding MOs Bond Order = 0.5(number of electrons in bonding MOs - number of electrons in anti-bonding MOs) H2+ bond order = 0.5 (s1s)1 H2 bond order = 1 (s1s)2 He2 bond order = 0 (s1s)2 (s*1s)2

Period 2 elements In period 2 elements each atom has one 2s and three 2p valence AOs; expect to form eight MOs The two 2s orbitals (one from each atom) overlap to form a s2s bonding MO and a s*2s antibonding MO The six 2p orbitals (three from each atom) overlap to form six MOs The two 2p-orbitals directed toward each other form a bonding s-orbital (s2p) and an anti-bonding s*-orbital (s*2p) Two 2p orbitals that are perpendicular to the internuclear axis overlap side by side to form two bonding p and two anti-bonding p* orbitals.

Anti-bonding Bonding s and s* orbitals formed from p AOs p and p* orbitals formed from p AOs

MO diagram for homonuclear diatomic molecules O2 and F2 MO diagram for homonuclear diatomic molecules Li2 through N2