Quiz 10  Goodness-of-fit test  Test of independence.

Slides:



Advertisements
Similar presentations
Goodness Of Fit. For example, suppose there are four entrances to a building. You want to know if the four entrances are equally used. You observe 400.
Advertisements

15- 1 Chapter Fifteen McGraw-Hill/Irwin © 2005 The McGraw-Hill Companies, Inc., All Rights Reserved.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Chapter 12 Goodness-of-Fit Tests and Contingency Analysis
Inference about the Difference Between the
© 2002 Prentice-Hall, Inc.Chap 10-1 Statistics for Managers using Microsoft Excel 3 rd Edition Chapter 10 Tests for Two or More Samples with Categorical.
Chapter 10 Chi-Square Tests and the F- Distribution 1 Larson/Farber 4th ed.
1 1 Slide © 2009 Econ-2030-Applied Statistics-Dr. Tadesse. Chapter 11: Comparisons Involving Proportions and a Test of Independence n Inferences About.
PSY 340 Statistics for the Social Sciences Chi-Squared Test of Independence Statistics for the Social Sciences Psychology 340 Spring 2010.
Chapter Goals After completing this chapter, you should be able to:
Horng-Chyi HorngStatistics II127 Summary Table of Influence Procedures for a Single Sample (I) &4-8 (&8-6)
Irwin/McGraw-Hill © The McGraw-Hill Companies, Inc., 2000 LIND MASON MARCHAL 1-1 Chapter Thirteen Nonparametric Methods: Chi-Square Applications GOALS.
Crosstabs and Chi Squares Computer Applications in Psychology.
Chi-Square and F Distributions Chapter 11 Understandable Statistics Ninth Edition By Brase and Brase Prepared by Yixun Shi Bloomsburg University of Pennsylvania.
Hypothesis Testing Using The One-Sample t-Test
1. State the null and alternative hypotheses. 2. Select a random sample and record observed frequency f i for the i th category ( k categories) Compute.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
Chapter 13 Chi-Square Tests. The chi-square test for Goodness of Fit allows us to determine whether a specified population distribution seems valid. The.
Chi-Square Test Dr Kishor Bhanushali. Chi-Square Test Chi-square, symbolically written as χ2 (Pronounced as Ki-square), is a statistical measure used.
© 2004 Prentice-Hall, Inc.Chap 12-1 Basic Business Statistics (9 th Edition) Chapter 12 Tests for Two or More Samples with Categorical Data.
The Chi-Square Distribution 1. The student will be able to  Perform a Goodness of Fit hypothesis test  Perform a Test of Independence hypothesis test.
The table shows a random sample of 100 hikers and the area of hiking preferred. Are hiking area preference and gender independent? Hiking Preference Area.
HAWKES LEARNING SYSTEMS Students Matter. Success Counts. Copyright © 2013 by Hawkes Learning Systems/Quant Systems, Inc. All rights reserved. Section 10.7.
Copyright © 2013 Pearson Education, Inc. All rights reserved Chapter 10 Inferring Population Means.
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
1 1 Slide © 2005 Thomson/South-Western Chapter 12 Tests of Goodness of Fit and Independence n Goodness of Fit Test: A Multinomial Population Goodness of.
Chapter 11: Applications of Chi-Square. Count or Frequency Data Many problems for which the data is categorized and the results shown by way of counts.
Chapter 11 Chi-Square Procedures 11.3 Chi-Square Test for Independence; Homogeneity of Proportions.
Chi-square test or c2 test
10.1: Multinomial Experiments Multinomial experiment A probability experiment consisting of a fixed number of trials in which there are more than two possible.
Practical Statistics Chi-Square Statistics. There are six statistics that will answer 90% of all questions! 1. Descriptive 2. Chi-square 3. Z-tests 4.
A Course In Business Statistics 4th © 2006 Prentice-Hall, Inc. Chap 9-1 A Course In Business Statistics 4 th Edition Chapter 9 Estimation and Hypothesis.
1 1 Slide © 2006 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 In this case, each element of a population is assigned to one and only one of several classes or categories. Chapter 11 – Test of Independence - Hypothesis.
1 1 Slide Chapter 11 Comparisons Involving Proportions n Inference about the Difference Between the Proportions of Two Populations Proportions of Two Populations.
Chi-Square Procedures Chi-Square Test for Goodness of Fit, Independence of Variables, and Homogeneity of Proportions.
Other Chi-Square Tests
Analysis of Two-Way Tables Moore IPS Chapter 9 © 2012 W.H. Freeman and Company.
GOODNESS OF FIT Larson/Farber 4th ed 1 Section 10.1.
HYPOTHESIS TESTING BETWEEN TWO OR MORE CATEGORICAL VARIABLES The Chi-Square Distribution and Test for Independence.
Other Chi-Square Tests
Chi-Square Test James A. Pershing, Ph.D. Indiana University.
Section 10.2 Independence. Section 10.2 Objectives Use a chi-square distribution to test whether two variables are independent Use a contingency table.
1 1 Slide © 2009 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1/71 Statistics Tests of Goodness of Fit and Independence.
© Copyright McGraw-Hill CHAPTER 11 Other Chi-Square Tests.
EGR 252 S10 JMB Ch.10 Part 3 Slide 1 Statistical Hypothesis Testing - Part 3  A statistical hypothesis is an assertion concerning one or more populations.
Practical Statistics Chi-Square Statistics. There are six statistics that will answer 90% of all questions! 1. Descriptive 2. Chi-square 3. Z-tests 4.
Chapter Outline Goodness of Fit test Test of Independence.
Ka-fu Wong © 2003 Chap Dr. Ka-fu Wong ECON1003 Analysis of Economic Data.
The table shows a random sample of 100 hikers and the area of hiking preferred. Are hiking area preference and gender independent? Hiking Preference Area.
Dan Piett STAT West Virginia University Lecture 12.
11.2 Tests Using Contingency Tables When data can be tabulated in table form in terms of frequencies, several types of hypotheses can be tested by using.
Quiz 11  Analysis of Variance (ANOVA)  post hoc tests.
1 Chi-square Test Dr. T. T. Kachwala. Using the Chi-Square Test 2 The following are the two Applications: 1. Chi square as a test of Independence 2.Chi.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Chapter 12 Tests of Goodness of Fit and Independence n Goodness of Fit Test: A Multinomial.
1. State the null and alternative hypotheses. 2. Select a random sample and record observed frequency f i for the i th category ( k categories) Compute.
Chapter 10 Section 5 Chi-squared Test for a Variance or Standard Deviation.
Section 10.2 Objectives Use a contingency table to find expected frequencies Use a chi-square distribution to test whether two variables are independent.
CHI SQUARE DISTRIBUTION. The Chi-Square (  2 ) Distribution The chi-square distribution is the probability distribution of the sum of several independent,
Sampling distribution of
Test of independence: Contingency Table
Testing the Difference Between Two Means
10 Chapter Chi-Square Tests and the F-Distribution Chapter 10
Chapter 8 Hypothesis Testing with Two Samples.
Qualitative data – tests of association
Elementary Statistics: Picturing The World
Hypothesis Tests for a Standard Deviation
Presentation transcript:

Quiz 10  Goodness-of-fit test  Test of independence

1. Which distribution is used to test whether a frequency distribution fits a known pattern? a) F-ratio b) chi-squared c) Poisson d) standard normal

2. If you test the “fairness” of a die what critical value would you use for a 2-tailed test at =0.05? a) b) c) d)

3. Which condition is NOT necessary for a goodness-of-fit test? a) data are normally distributed b) expected values must be greater than or equal to 5 c) data are from random sampling d) data are independent

4. Below are the results of throwing a die 180 times. A chi-squared test using SPSS was conducted and the results are shown. What can you conclude from these data? a) not enough throws were done b) test inconclusive c) die was fair d) die was unfair

5. For a “test of independence” and a contingency table of 3 rows and 4 columns how many degrees of freedom (df) are there? a) 12 b) 11 c) 10 d) 6

6. Given the following SPSS output what can you conclude about the relationship between occupation and preference for an operation? a) independent b) dependent c) fit pattern d) do not fit pattern