Statics (MET 2214) Prof. S. Nasseri Forces and Moments MET 2214.

Slides:



Advertisements
Similar presentations
Forces and Moments MET 2214 Ok. Lets get started.
Advertisements

Distributed Forces: Centroids and Centers of Gravity
STATIKA STRUKTUR Genap 2012 / 2013 I Made Gatot Karohika ST. MT.
CE Statics Lecture 15. Moment of a Force on a Rigid Body If a force is to be moved from one point to another, then the external effects of the force.
Center of gravity and Centroids MET 2214
Forces and Moments MET 2214 Ok. Lets get started.
Distributed Loads Reference Chapter 4, Section 9
MOMENT OF A COUPLE Today’s Objectives: Students will be able to
ME 221Lecture 141 ME 221 Statics Lecture #14 Sections 4.1 – 4.2.
ME 221Lecture 171 ME 221 Statics Lecture #17 Section 4.6.
REDUCTION OF DISTRIBUTED LOADING (Section 4.10)
ENGR 225 Section
Engineering Mechanics: Statics
ME221Lecture 71 ME 221 Statics Lecture #7 Sections 4.1 – 4.3.
ME 221Lecture 161 ME 221 Statics Lecture #16 Section 4.6.
ME221Lecture 81 ME 221 Statics Lecture #8 Section
Statics - Review Important Principles of Statics used in Mechanics of Materials External Forces (or Loads) Concentrated Force – applied to a point on a.
Licensed Electrical & Mechanical Engineer
Distributed Forces: Centroids and Centers of Gravity
Mechanics of Materials(ME-294)
Moment of a force The moment of a force about a point or axis provides a measure of the tendency of the force to cause a body to rotate about the point.
7.4 Cables Flexible cables and chains are used to support and transmit loads from one member to another In suspension bridges and trolley wheels, they.
Fluid Statics Lecture -3.
Engineering Mechanics: Statics
4.10 Reduction of a Simple Distributed Loading
ENGR-36_Lec-24_Dist_Loads.pptx 1 Bruce Mayer, PE Engineering-36: Engineering Mechanics - Statics Bruce Mayer, PE Licensed Electrical.
QUIZ.
Shawn Kenny, Ph.D., P.Eng. Assistant Professor Faculty of Engineering and Applied Science Memorial University of Newfoundland ENGI.
Copyright © 2010 Pearson Education South Asia Pte Ltd
The center of gravity of a rigid body is the point G where a single force W, called the weight of the body, can be applied to represent the effect of the.
Centroids and Centers of Gravity
NOR AZAH BINTI AZIZ KOLEJ MATRIKULASI TEKNIKAL KEDAH
9.6 Fluid Pressure According to Pascal’s law, a fluid at rest creates a pressure ρ at a point that is the same in all directions Magnitude of ρ measured.
TOPIC 10 Moment of a Force. So far we have mainly considered particles. With larger bodies forces may act in many different positions and we have to consider.
REDUCTION OF A SIMPLE DISTRIBUTED LOADING
Theoretical Mechanics STATICS KINEMATICS
Determination of Centroids by Integration
Cont. ERT 146 Engineering Mechanics STATIC. 4.4 Principles of Moments Also known as Varignon ’ s Theorem “ Moment of a force about a point is equal to.
ME 201 Engineering Mechanics: Statics Chapter 4 – Part F 4.9 Reduction of a Simple Distributed Loading.
Fundamentals of Statics and Dynamics - ENGR 3340
Problem The square gate AB is held in the position shown by hinges along its top edge A and by a shear pin at B. For a depth of water d = 3.5 ft,
Problem a 24 kN 30 kN The beam AB supports two concentrated loads and rests on soil which exerts a linearly distributed upward load as shown. Determine.
Engineering Mechanics
Force System Resultants 4 Engineering Mechanics: Statics in SI Units, 12e Copyright © 2010 Pearson Education South Asia Pte Ltd.
Objectives: Determine the effect of moving a force.
Problem 5-c The square gate AB is held in the position shown by hinges along its top edge A and by a shear pin at B. For a depth of water d = 3.5 ft,
Distributed Forces: Centroids and Centers of Gravity
STATICS (ENGINEERING MECHANICS-I)
Copyright © 2010 Pearson Education South Asia Pte Ltd
REDUCTION OF A SIMPLE DISTRIBUTED LOADING
Equivalent Systems.
STATICS (ENGINEERING MECHANICS-I)
Distributed Forces: Centroids and Centers of Gravity
QUIZ (Chapter 4) 7. In statics, a couple is defined as __________ separated by a perpendicular distance. A) two forces in the same direction B) two.
CENTROIDS AND CENTRES OF GRAVITY
Distributed Forces: Centroids and Centers of Gravity
Statics:The Next Generation (2nd Ed
Problem 5-b a 24 kN 30 kN The beam AB supports two concentrated loads and rests on soil which exerts a linearly distributed upward load as shown. Determine.
Forces and Moments MET 2214 Ok. Lets get started.
REDUCTION OF A SIMPLE DISTRIBUTED LOADING
REDUCTION OF A SIMPLE DISTRIBUTED LOADING
Center of Mass, Center of Gravity, Centroids
Distributed Forces: Centroids and Centers of Gravity
REDUCTION OF A SIMPLE DISTRIBUTED LOADING
TUTORIAL.
Problem 7.6 Locate the centroid of the plane area shown. y x 20 mm
CHAPTER 3: BASIC CONCEPT OF MOMENTS
REDUCTION OF A SIMPLE DISTRIBUTED LOADING
REDUCTION OF DISTRIBUTED LOADING
Presentation transcript:

Statics (MET 2214) Prof. S. Nasseri Forces and Moments MET 2214

Statics (MET 2214) Prof. S. Nasseri Moments and Forces Part 8

Statics (MET 2214) Prof. S. Nasseri Types of Forces (Loads) Point loads - concentrated forces exerted at point or location. Distributed loads - a force applied along a length or over an area. The distribution can be uniform or non-uniform.

Statics (MET 2214) Prof. S. Nasseri Equivalent system Distributed loading : Wind, fluids, and the weight of a material supported over a body’s surface are examples of distributed loadings. Pressure p (force/unit area) is the intensity of these loadings.

Statics (MET 2214) Prof. S. Nasseri Application A distributed load on the beam exists due to the weight of the lumber. Is it possible to reduce this force system to a single force that will have the same external effect? If yes, how?

Statics (MET 2214) Prof. S. Nasseri Application The sandbags on the beam create a distributed load. How can we determine a single equivalent resultant force and its location?

Statics (MET 2214) Prof. S. Nasseri Equivalent system The loading function is written as p= p(x) in Pa or N/m 2. Because it is a function of and it is uniform along the y-axis. If we multiply p = p(x) by width a, we get w= p(x). a which is called the load intensity. [with the dimension of (N/m 2 )(m)=N/m] So w= w(x) N/m. w=load per unit length

Statics (MET 2214) Prof. S. Nasseri Equivalent system The system of forces of intensity w=w(x) can be simplified into a single resultant force F R and its location x can be specified. Magnitude of the resultant force:

Statics (MET 2214) Prof. S. Nasseri Equivalent system So if we consider the 3D pressure loading, the magnitude of F R is defined by calculating the volume under the distributed loading curve p = p(x). The location of resultant force is determined by finding the centroid of this volume.

Statics (MET 2214) Prof. S. Nasseri Concept test 1. The resultant force (F R ) due to a distributed load is equivalent to the _____ under the distributed loading curve, w = w(x). A) centroid B) arc length C) area D) volume 2. The line of action of the distributed load’s equivalent force passes through the ______ of the distributed load. A) centroid B) mid-point C) left edge D) right edge

Statics (MET 2214) Prof. S. Nasseri Concept test 1. What is the location of F R, i.e., the distance d? A) 2 mB) 3 m C) 4 m D) 5 mE) 6 m F R B A d B A 3 m 2. If F 1 = 1 N, x 1 = 1 m, F 2 = 2 N and x 2 = 2 m, what is the location of F R, i.e., the distance x. A) 1 m B) 1.33 m C) 1.5 m D) 1.67 m E) 2 m F R x F 2 F 1 x 1 x 2

Statics (MET 2214) Prof. S. Nasseri Concept test 1. F R = ____________ A) 12 N B) 100 N C) 600 N D) 1200 N 2. x = __________. A) 3 m B) 4 m C) 6 m D) 8 m F R 100 N/m 12 m x

Statics (MET 2214) Prof. S. Nasseri Example 1 Replace the loading by an equivalent resultant force and specify its location on the beam, measured from point B.

Statics (MET 2214) Prof. S. Nasseri Example 1