PSY 2403: Human-Technology Interaction Lecture no. 4: The Embodied Mind Paradigm: Kjell Ivar Øvergård Cand. Polit.

Slides:



Advertisements
Similar presentations
Learning Technologies Centre Connectivism: A Learning Theory for a Digital Age George Siemens
Advertisements

Seeing and Organizing Identity Online thoughts on digital context, perception of self and identity management.
Communication Theory Lecture 1: Introduction to Communication Theory and Novel Technology Dr. Danaë Stanton Fraser.
Advanced Educational Psychology --mgmsantos. Misconceptions: 1. That nothing needs to be done for students with a high intelligence because they will.
Re-viewing the CMI Framework (Re-view: Take another look, see anew)
Annoy Your Users Less Session 202 Philip Wolfe, Lead Developer Farm Credit Services of America.
Knowledge Acquisition and Modelling Concept Mapping.
 Distributed Cognition emphasizes the distributed nature of cognitive phenomena across individuals, artifacts, and representations that are both internal.
Chapter 1 Introduction. “How do I send picture by ?” “Click on Attach button, or paper clip icon, select the picture and click attach” The instructions.
OASIS Reference Model for Service Oriented Architecture 1.0
B&LdJ1 Theoretical Issues in Psychology Philosophy of Science and Philosophy of Mind for Psychologists.
About metaphorical expressions The essence of a metaphor is understanding and experiencing one kind of things in terms of another Metaphor is pervasive.
Lecture 3: Shared Workspace and Design Coordination Dr. Xiangyu WANG.
COGNITIVE SCIENCE Dr. Tom Froese. Asimo breaks down (again)
Meaningful Learning in an Information Age
Chapter 2: Piaget's Stages of Cognitive Development Jean Piaget ( )
Lev Vygotsky’s Social Development Theory
Noynay, Kelvin G. BSED-ENGLISH Educational Technology 1.
Embodied Cognition and Consciousness: A Bestiary Dr. Andrew Bailey Philosophy Department University of Guelph Guelph, Ontario N1G 2W1, Canada
Skills Approach Chapter 3.
Why Children Draw  To communicate their own feelings, ideas and experiences and express them in ways that someone else can understand.  Provides a nonverbal.
Text -informational content in interactive new media Lisa Lee.
Principles of User Centred Design Howell Istance.
Neural mechanisms of Spatial Learning. Spatial Learning Materials covered in previous lectures Historical development –Tolman and cognitive maps the classic.
Andrew Brasher Andrew Brasher, Patrick McAndrew Userlab, IET, Open University Human-Generated Learning.
Ecological Interface Design
Com3240 Adaptive Intelligence Epigenetic Robotics Amanda Sharkey Reinforcement Learning Eleni Vasilaki.
Towards Cognitive Robotics Biointelligence Laboratory School of Computer Science and Engineering Seoul National University Christian.
A Gibsonian analysis of linguistic information Finding Common Ground: UConn 2014 Sabrina Golonka Leeds Metropolitan University Centre for Applied Social.
The Effect of Mood on Perceiving Spatial Layout Cedar Riener, Jeanine Stefanucci & Dennis R. Proffitt Department of Psychology, University of Virginia.
Psychology Chapter 1: What is Psychology? Section 1: The Science of Psychology.
Chapter 1 – A Geographer’s World
The Visual Cliff Experiment
Understanding Users Cognition & Cognitive Frameworks
Critical Thinking Lesson 8
Intentional binding with a robotic hand To what extent agency is modulated by embodiment? Emilie CASPAR, Patrick HAGGARD & Axel CLEEREMANS 1- CO3-Consciousness,
INFO 414 Information Behavior Theoretical foundations, frameworks and paradigms.
1 The Structure of Collaborative Problem Solving in a Virtual Math Team Gerry Stahl the Drexel.
CHAPTER 8: VISUAL IMAGERY AND SPATIAL COGNITION Jennifer Hightower, Jordan Scales, and Kandace Howard.
1 What the body knows: Exploring the benefits of embodied metaphors in hybrid physical digital environments Alissa N. Antle, Greg Corness, Milena Droumeva.
English Theme Date: Apr 24, 2007 Room: Instructor: Mafuyu Kitahara Material: Thelen, E. (1995) “Time-scale dynamics and the development.
Lecture №1 Role of science in modern society. Role of science in modern society.
Activity theory Olivier Georgeon April 8 th
Grounded cognition. Barsalou, L. W. (2008). Annual Review of Psychology, 59, Grounded theories versus amodal representations. – Recapitulation.
Anne Watson Hong Kong  grasp formal structure  think logically in spatial, numerical and symbolic relationships  generalise rapidly and broadly.
Activity theory Shaoke Zhang Olivier Georgeon Frank Ritter March
Cognitive Level of Analysis Unit 3. Cognition The mental act or process by which knowledge is acquired.
Interaction Frameworks COMPSCI 345 S1 C and SoftEng 350 S1 C Lecture 3 Chapter (Heim)
Exploring Philosophy During a Time of Reform in Mathematics Education Dr. Kimberly White-Fredette Gordon State College Barnesville, GA.
DATA VISUALIZATION BOB MARSHALL, MD MPH MISM FAAFP FACULTY, DOD CLINICAL INFORMATICS FELLOWSHIP.
Software Design Process. What is software? mid-1970s executable binary code ‘source code’ and the resulting binary code 1990s development of the Internet.
Tim Berners-Lee “inventor” of the web
Computational Model of Perception
PSY 2403: Human-Technology Interaction Lecture no
Hallucination as a Response to the Ecological Approach to Perception
CEN3722 Human Computer Interaction Cognition and Perception
Chapter 3 Understanding users
Consciousness and the Embodied Self Philosophy Department
The science subject knowledge
The User Lecture 2 DeSiaMore
The Six Essential Elements of Geography at mrdowling.com
Spatial and Geospatial Thinking in System Design
CSc4730/6730 Scientific Visualization
Social Action of Playing Self as a Response to Challenge of Nihilism
Human Computer Interaction
Leadership Chapter 3 - Skills Approach Northouse, 4th edition.
The Six Essential Elements of Geography at mrdowling.com
PSY 2403: Human-Technology Interaction Lecture no
English Theme end Date: July 3rd, 2007 Room: 8-405
Presentation transcript:

PSY 2403: Human-Technology Interaction Lecture no. 4: The Embodied Mind Paradigm: Kjell Ivar Øvergård Cand. Polit

Aim of this lecture You should: Understand the central tenets of The Embodied Mind approach. Be able to differentiate Embodiment from the information processing approach to Human- Technology Interaction. Describe what the placement of the Embodied Mind- approach in relation to the design process. Be able to put the Embodied Mind approach into the historical perspective of Human Factors-research. Ask interesting questions during and after the lecture!

The Embodied Mind approach [1]: History Surfaced in the phenomenological philosophy of of Heidegger (1927) and Merleau-Ponty (1962) Appeared in psychology & movement science in the mid./late1970’s Began to influence Human Factors research during the mid./late 1980’s Altered the focus away from information processing towards meaningful representations and distributed activity

The embodied mind approach [2]: Central aspects Cognition and bodily movements are inseparable There are no disembodied planner or problem solver in the brain The brain is an coordinative organ, not the seat of problem solving and cognition The focus are on human activity as a temporally and spatially extended process. Human cognition and movement are emergent properties of a reciprocal interaction between a biological system (the body) and an environment

Embodiment & Human-Technology Interaction

Embodiment: Two aspects There are two different conceptualisations of ’Embodiment’ (see Hirose, 2002). 1) ’The state of being embodied’ –This aspect is partly related to ontology 2) ’The act of embodying’ –The way which humans relate to/in the world

’The state of being embodied’ The mental structures of humans are related to/shaped by their bodily constitution and the world that this body inhabits (see Lakoff & Johnson, 1999). ”That thought is thus embodied-containing within it the very essence of our bodily experience.... What Infants do in everyday life, what they perceive, how they act, and what they remember are joined seamlessly to how they think.” (Thelen, 1995, p. 71) ”... thinking grounded in and inseparable from bodily action.” (Thelen, 1995, p. 71, our italics)

”The act of embodying [1]” May be described as the adaptation to new tools or environments through active use [or training], where the object are incorporated into the bodily and perceptual framework of the user. ”Once the stick has become a familiar instrument, the world of feelable things recedes and now begins, not at the outer sking of the hand, but at the end of the stick.... the stick is no longer an object perceived by the blind man, but an instrument with which he perceives. It is a bodily auxiliary, and extention of the bodily synthesis.” (Merleau-Ponty, 1962, pp )

”The act of embodying” [2] The ”blind man’s stick”-example show that the body does not end at the skin, but rather can extend out into the environment through [with the aid of] the tool. When the tool/technology is embodied, the user acts directly on the task. The tool becomes nonexistent as an object, and does not hinder the activity. May be said to describe an aspect of what is called ”automated activity” (but this term is problematic as it is related to a set of different ontological statements!)

The act of embodying [3] Embodying is a continuous process, similar to perceptual adaptation. It involves a change in the perception of both self and the environment. Some technologies are difficult to use/learn, -they are not as easily embodied. –NOTE: Embodying is NOT the same as ’learning to use’!!

The act of embodying: [4] Distributed Cognition Cognition and problem solving also extends outside the boundaries of the skull, similarly to the extention of the body. The mental activites of humans are distributed across an ecological context. –Called distributed cognition –Are spatially and temporally distributed (Happen in space, over time) We use external props to guide problem solving, (e.g. maps and compass to guide navigation by high-speed boat)

Distributed cognition (1) Example of a text from the syllabus The important characteristics of the text are similar to the other parts However, this text can be altered to better fit with the reader (or ’operator’)

Distributed cognition (2) Same text as previous page, but now altered to fit the reader Use of pen and paper is one of the most common aids for problem solving Structuring of the environment to ease problem solving This page is as much a part of human cognition as thinking/visualizing/ talking In principle similar to navigation with maps and compass.

Embodiment and Design [1] Humans are primarily good at pattern recognition & formation, and at coordinating bodily movements. Humans are generally poor at logical reasoning and planning –The main elements that cognitive psychology have studied Humans improve their mental computational power by structuring their environment, thereby allowing more complex problem solving.

Embodiment and design [2] Effective interfaces should have a meaningful and functional relationship between controls and effects. ’Embodied’ Interfaces should (in addition) allow for: –A Possibility to distibute problem solving activities by restructuring the working space –Physical interaction with the interface –Alteration of the interface to fit changing task demands

Ecological Interaction Properties Describes physical/phenomenal characteristics of interfaces which affects the ’directness’ of the interface –Directness may be translated as the degree of problemsolving necessary to effectively interact with an interface –Direct interaction may be described as natural fluent interaction based on existing human sensori-motor qualities –Indirect interaction are equivalent with explicit abstract reasoning and/or problem solving –Human-Technology Interaction moves along the direct-indirect continuum all the time. –There may be other and/or better description of properties!

EIP [2] The Paper by Hoff et al is mainly related to the phenomenal qualities of interfaces. Physical characteristics related to performance are also possible to describe. It is to some degrees possible to predict performance from physical characteristics

EIP & Embodiment: ”Knowledge in the World” Affordances: Action-possibilies in the environment –Related to the individual actor/observer –Neither subjective nor objective – but both –Directly meaningful for an actor –Can be perceived directly, are specified by the ambient energy radiated from the environment

References: Clark, A. (1997). Being There: Putting Brain, Body, and World Together Again. Cambridge, Mass: The MIT Press. Clark, A. (1999). An embodied cognitive science? Trends in Cognitive Sciences, 3(9), Gibson, J. J. (1979). The Ecological Approach to Visual Perception. Boston: Houghton Mifflin. Heidegger, M. (1927/1962). Being and Time (Trans. J. Macquarrie & E. Robinson). Oxford, UK: Blackwell Publishers Hirose, N. (2002). An ecological approach to embodiment and cognition. Cognitive Systems Research, 3, Hoff, T., Øritsland, T.A. and Bjørkli, C.A. (2002) Exploring the Embodied-Mind Approach to User Experience. Proceedings of NordiCHI Conference, p Hutchins, E. (1995). Cognition in the Wild. Cambridge, Mass.: The MIT Press Lakoff, G. & Johnson, M. (1999). Philosophy in The Flesh: The Embodied Mind and Its Challenge to Western Thought. New York, NY: Basic Books. Merleau- Ponty, M. (1962). Phenomenology of Perception. (trans. Colin Smith). London, UK: Routledge. Thelen, E. (1995). Time-scale dynamics and the Development of an Embodied Cognition. In R. F. Port & T. Van Gelder (eds.) Mind As Motion: Exploration in the Dynamics of Cognition. (pp ). Cambridge, Mass: The MIT Press