François M. M. Morel Slides by Ja-Myung Kim
Years before µatm 400 µatm Vostok paleo Petit et al. 1999, Keeling et al. Mauna Loa from ice core & modern data Changes in atm. CO 2 concentration pCO 2 (µatm) 400 µatm
Seawater pCO 2 time-series monitoring stn.ESTOC ( ) BATS ( ) ALOHA ( )
Decadal changes at time-series stations ESTOC ( ) BATS ( ) ALOHA ( ) Year pCO 2 (µatm) ALOHA ( ) ESTOC ( ) Bates NR, Byrne RH, Dore JE, Feely RA, Gonzalez-Davila M, Karl DM, Lee K, Kleypas JA, Orr J (IPCC ARS) Year pCO 2 (µatm) BATS ( )
Atlantic Pressure (db) 60°50°40°30°20°10°0°10°50° 60° N40°30°20° IndianPacific Pressure (db) 60°50°40°30°20°10°0°10°50°40°30°20° 60°50°40°30°20°10°0°10°20° Latitude Pressure (db) Latitude Vertical distributions of CO 2 in the ocean Anthropogenic CO 2 conc. (μmol kg -1 ) “Half of the CO 2 stored in the oceans is found in the upper 10% of the ocean” Sabine et al. 2004
Anthropogenic carbon emissions are increasing atmospheric CO 2 Ocean is a CO 2 sink Why and How does that affect ocean chemistry ? Ocean acidification
CO 2 (aq) HCO 3 - CO H 2 O+HCO 3 - H+H+ CO 2 (aq) CO 2 (g) Effect of CO 2 on carbonate system H+H+ + CO 2 increases CO 3 2- decreases H+H+ increases (pH decreases)
ESTOC ( ) BATS ( ) ALOHA ( ) Decadal changes of pH & CO 3 2- at time-series monitoring stn. pH decrease: yr -1 CO 3 2- decrease : µmol kg -1 yr -1
CO 3 2- pH CO 2 CO 3 2- What biological consequences ? Photosynthesis Calcification Other physiological effects
What biological consequences ? Photosynthesis Calcification Other Physiological effects CO 3 2- pH
Experimental approaches Molecular mechanisms Lab cultures Coastal in-situ perturbation Open ocean monitoring Bottles Big bags Natural env.
Open ocean monitoring
Univ. of Bergen Univ. of Washington EPOCA POSTECH Mesocosm
Open ocean mesocosm, Baltic sea U. Riebesell (GEOMAR) In situ ecosystem-based CO 2 perturbation experiment MESOCOSM
Laboratory cultures Low CO 2 High CO 2 Mechanismstudy
What biological consequences ? Photosynthesis Calcification Other Physiological effects CO 3 2- pH
Photosynthesis CH 2 O Organic matter Light reaction Dark reaction e-e-e-e- photons H2OH2OH2OH2O O2O2O2O2 CO 2
Sediments Atmosphere Org C Phytoplankton Surface Ocean CO Depth (m) CO 2 (µM) Biological pump
Photosynthesis Light reaction Dark reaction e- e- e- e- H2OH2OH2OH2O O2O2O2O2 CO 2 CH 2 O organic matter RubisCO Poor affinity for CO 2 K m ≈ 50 µM >> [CO 2 ] seawater
Carbon concentrating mechanism Chloroplast CO 2 80 µM HCO 3 - CO 2 10 µM HCO 3 - CA CH 2 O CA RubisCO 2 mM
CA Skeletonema costatum CA activity U (mg Chl a) ppm Enzyme Rost et al Response of CCM to increasing CO 2 Growth rates Labculture ppm Growth rate (d -1 ) Skeletonema costatum Rost et al Growth rates ppm Growth rate (d -1 ) Skeletonema costatum 40% In-situ Kim et al Growth rates ppm Growth rate (d -1 ) Natural assemblage Ocean Tortell et al Growth rates Low CO 2 High CO 2 Growth rate (d -1 ) ? Future growth rate
What biological consequences ? Photosynthesis Calcification Other Physiological effects CO 3 2- pH
Calcium carbonate (CaCO 3 ) production & dissolution Main overall reaction: +Ca 2+ CO 3 2- CaCO 3 (s) [CO 3 2- ] > [CO 3 2- ] sat [CO 3 2- ] < [CO 3 2- ] sat Calcite Aragonite
Future projection for saturation state Turley et al [CO 3 2- ] = [CO 3 2- ] sat [CO 3 2- ] / [CO 3 2- ] sat Aragonite [CO 3 2- ] / [CO 3 2- ] sat Calcite
Tropical corals Coraline algae Molluscs Pteropods Coccolithophores Responses of marine calcifiers to increasing CO 2
Mussels & Oysters Gazeau et al Mussels (Mytilus edulis) Oysters (Crassostrea gigas)
Coccolithophores Low CO 3 2- Ambient CO 3 2- High CO 3 2- Coccolith size (µm) Coccolith Engel et al. 2005
Adapted from Doney et al Major groups Tropical corals Coraline red algae Molluscs Pteropods Coccolithophores Responses at increasing CO 2 Different responses of marine calcifiers to increasing CO 2
Poor understanding of the mechanisms responsible for the sensitivity Seawater pH Calcifying pH Seawater Skeleton inside H+H+H+H+ Ca 2+ CaCO 3 CO HCO H + + H + CO 3 2- Seawater Venn et al Stylophora pistillata (reef coral)
What biological consequences ? Photosynthesis Other Physiological effects pH Calcification CO 3 2-
l all pH homeostasis External enzymes Metalavailability Physiologicalprocesses pH
l allPhysiologicalprocesses pH Metal availability Fe(OH) 3 + H + Fe pH homeostasis External enzymes
Photosynthesis Light reaction Dark reaction e-e-e-e- H2OH2OH2OH2O O2O2O2O2 CO 2 Fe Organic matter
Effect of pH on Fe chemistry CaFe + 2H + → + Fe(OH) H + → Ca-EDTAFe-EDTA + 2H + + Y → Bound Fe Free Fe + 2H + + Y → Bound Fe
Shi et al Thalassiosira weissflogii kton The rate of Fe uptake by phytoplankton + 2H + + Y → Bound Fe Free Fe + 2H + + Y → Bound Fe Total Fe (nM) µmol Fe mol C -1 day -1 pH 7.7 pH Free Fe (pM) :1 pH 8.6 Fe uptake rate
pH effect depends on mature of chelator Shi et al. 2010
Weak effect of pH on Fe uptake in field Shi et al. 2010
Complications of OA research Time scales Adaptation Ocean warming Temperature Mixing CO 3 2- pH
Phytoplankton Succession Phytoplankton Succession Photochemistry C-fixation Transporter Enzyme Expression Enzyme Expression Cell Growth Competition Acclimation Adaptation Genetic mutation Lab. cultures Field monitoring Predictions Time scales Log 10 Days geological epoches nano seconds years centuries Timescales secondsdays
Today Year to 6°C Mixing Nutrient input Irradiance Stratification Surface temperature ++++/- Ocean warming: Temperature & Mixing Temperature
Morel Group Ja-Myung Kim
Biologically complicated… Chemically simple,