ICS-270a:Notes 5: 1 Notes 5: Game-Playing ICS 270a Winter 2003.

Slides:



Advertisements
Similar presentations
Adversarial Search Chapter 6 Section 1 – 4. Types of Games.
Advertisements

Adversarial Search We have experience in search where we assume that we are the only intelligent being and we have explicit control over the “world”. Lets.
Games & Adversarial Search Chapter 5. Games vs. search problems "Unpredictable" opponent  specifying a move for every possible opponent’s reply. Time.
This lecture topic: Game-Playing & Adversarial Search
Games & Adversarial Search
ICS-271:Notes 6: 1 Notes 6: Game-Playing ICS 271 Fall 2008.
CS 484 – Artificial Intelligence
University College Cork (Ireland) Department of Civil and Environmental Engineering Course: Engineering Artificial Intelligence Dr. Radu Marinescu Lecture.
Adversarial Search Chapter 5.
Game-Playing & Adversarial Search
COMP-4640: Intelligent & Interactive Systems Game Playing A game can be formally defined as a search problem with: -An initial state -a set of operators.
Adversarial Search: Game Playing Reading: Chapter next time.
ICS-171:Notes 6: 1 Notes 6: Two-Player Games and Search ICS 171 Winter 2001.
Lecture 12 Last time: CSPs, backtracking, forward checking Today: Game Playing.
Adversarial Search CSE 473 University of Washington.
Search Strategies.  Tries – for word searchers, spell checking, spelling corrections  Digital Search Trees – for searching for frequent keys (in text,
Games CPSC 386 Artificial Intelligence Ellen Walker Hiram College.
G51IAI Introduction to AI Minmax and Alpha Beta Pruning Garry Kasparov and Deep Blue. © 1997, GM Gabriel Schwartzman's Chess Camera, courtesy IBM.
Two-player games overview Computer programs which play 2-player games – –game-playing as search – –with the complication of an opponent General principles.
Minimax and Alpha-Beta Reduction Borrows from Spring 2006 CS 440 Lecture Slides.
State Space 4 Chapter 4 Adversarial Games. Two Flavors Games of Perfect Information ◦Each player knows everything that can be known ◦Chess, Othello Games.
This time: Outline Game playing The minimax algorithm
Game-Playing & Adversarial Search Alpha-Beta Pruning, etc. This lecture topic: Game-Playing & Adversarial Search (Alpha-Beta Pruning, etc.) Read Chapter.
1 Game Playing Chapter 6 Additional references for the slides: Luger’s AI book (2005). Robert Wilensky’s CS188 slides:
Game Playing CSC361 AI CSC361: Game Playing.
1 search CS 331/531 Dr M M Awais A* Examples:. 2 search CS 331/531 Dr M M Awais 8-Puzzle f(N) = g(N) + h(N)
ICS-271:Notes 6: 1 Notes 6: Game-Playing ICS 271 Fall 2006.
Adversarial Search: Game Playing Reading: Chess paper.
Games & Adversarial Search Chapter 6 Section 1 – 4.
Game Playing: Adversarial Search Chapter 6. Why study games Fun Clear criteria for success Interesting, hard problems which require minimal “initial structure”
Game Playing State-of-the-Art  Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in Used an endgame database defining.
1 Adversary Search Ref: Chapter 5. 2 Games & A.I. Easy to measure success Easy to represent states Small number of operators Comparison against humans.
CSC 412: AI Adversarial Search
Game Trees: MiniMax strategy, Tree Evaluation, Pruning, Utility evaluation Adapted from slides of Yoonsuck Choe.
PSU CS 370 – Introduction to Artificial Intelligence Game MinMax Alpha-Beta.
Minimax Trees: Utility Evaluation, Tree Evaluation, Pruning CPSC 315 – Programming Studio Spring 2008 Project 2, Lecture 2 Adapted from slides of Yoonsuck.
Game Playing Chapter 5. Game playing §Search applied to a problem against an adversary l some actions are not under the control of the problem-solver.
Game Playing.
Game Playing Chapter 5. Game playing §Search applied to a problem against an adversary l some actions are not under the control of the problem-solver.
Games as Game Theory Systems (Ch. 19). Game Theory It is not a theoretical approach to games Game theory is the mathematical study of decision making.
Announcements (1) Cancelled: –Homework #2 problem 4.d, and Mid-term problems 9.d & 9.e & 9.h. –Everybody gets them right, regardless of your actual answers.
Introduction to Artificial Intelligence CS 438 Spring 2008 Today –AIMA, Ch. 6 –Adversarial Search Thursday –AIMA, Ch. 6 –More Adversarial Search The “Luke.
Minimax with Alpha Beta Pruning The minimax algorithm is a way of finding an optimal move in a two player game. Alpha-beta pruning is a way of finding.
Games. Adversaries Consider the process of reasoning when an adversary is trying to defeat our efforts In game playing situations one searches down the.
1 Adversarial Search CS 171/271 (Chapter 6) Some text and images in these slides were drawn from Russel & Norvig’s published material.
Game Playing Revision Mini-Max search Alpha-Beta pruning General concerns on games.
Today’s Topics Playing Deterministic (no Dice, etc) Games –Mini-max –  -  pruning –ML and games? 1997: Computer Chess Player (IBM’s Deep Blue) Beat Human.
Artificial Intelligence
Game-Playing & Adversarial Search Alpha-Beta Pruning, etc. This lecture topic: Game-Playing & Adversarial Search (Alpha-Beta Pruning, etc.) Read Chapter.
ARTIFICIAL INTELLIGENCE (CS 461D) Princess Nora University Faculty of Computer & Information Systems.
Adversarial Search 2 (Game Playing)
Adversarial Search and Game Playing Russell and Norvig: Chapter 6 Slides adapted from: robotics.stanford.edu/~latombe/cs121/2004/home.htm Prof: Dekang.
Adversarial Search and Game Playing Russell and Norvig: Chapter 5 Russell and Norvig: Chapter 6 CS121 – Winter 2003.
Explorations in Artificial Intelligence Prof. Carla P. Gomes Module 5 Adversarial Search (Thanks Meinolf Sellman!)
Artificial Intelligence in Game Design Board Games and the MinMax Algorithm.
Chapter 5: Adversarial Search & Game Playing
1 Chapter 6 Game Playing. 2 Chapter 6 Contents l Game Trees l Assumptions l Static evaluation functions l Searching game trees l Minimax l Bounded lookahead.
Game Playing Why do AI researchers study game playing?
Adversarial Search and Game-Playing
Games and Adversarial Search
Game-Playing & Adversarial Search
PENGANTAR INTELIJENSIA BUATAN (64A614)
Adversarial Search and Game Playing (Where making good decisions requires respecting your opponent) R&N: Chap. 6.
Pengantar Kecerdasan Buatan
State Space 4 Chapter 4 Adversarial Games.
Chapter 6 : Game Search 게임 탐색 (Adversarial Search)
Notes 6: Two-Player Games and Search
Games & Adversarial Search
Adversarial Search CS 171/271 (Chapter 6)
Games & Adversarial Search
Presentation transcript:

ICS-270a:Notes 5: 1 Notes 5: Game-Playing ICS 270a Winter 2003

ICS-270a:Notes 5: 2 Summary Computer programs which play 2-player games –game-playing as search –with the complication of an opponent General principles of game-playing and search –evaluation functions –minimax principle –alpha-beta-pruning –heuristic techniques Status of Game-Playing Systems –in chess, checkers, backgammon, Othello, etc, computers routinely defeat leading world players Applications? –think of “nature” as an opponent –economics, war-gaming, medical drug treatment

ICS-270a:Notes 5: 3 Chess Rating Scale Garry Kasparov (current World Champion ) Deep Blue Deep Thought

ICS-270a:Notes 5: 4 Solving 2-players Games Two players, perfect information Examples: –e.g., chess, checkers, tic-tac-toe configuration of the board = unique arrangement of “pieces” Statement of Game as a Search Problem –States = board configurations –Operators = legal moves –Initial State = current configuration –Goal = winning configuration –payoff function = gives numerical value of outcome of the game A working example: Grundy's game –Given a set of coins, a player takes a set and divides it into two unequal sets. The player who plays last, looses.

ICS-270a:Notes 5: 5 Game Tree Representation New aspect to search problem –there’s an opponent we cannot control –how can we handle this? S Computer Moves Opponent Moves Computer Moves G Possible Goal State lower in Tree (winning situation for computer)

ICS-270a:Notes 5: 6 Game Trees

ICS-270a:Notes 5: 7 Game Trees

ICS-270a:Notes 5: 8 Grundy’s Game Search Tree: represents Max moves. Goal: evaluate root node-value of game 0 - loss 1 - win In complex games search to termination is impossible. Rather: Find a first good move. Do it, wait for Min’s response Find a good move from new state

ICS-270a:Notes 5: 9 Grundy’s game - special case of nim

ICS-270a:Notes 5: 10 An optimal procedure: The Min-Max method Designed to find the optimal strategy for Max and find best move: –1. Generate the whole game tree to leaves –2. Apply utility (payoff) function to leaves –3. Back-up values from leaves toward the root: a Max node computes the max of its child values a Min node computes the Min of its child values –4. When value reaches the root: choose max value and the corresponding move. However: It is impossible to develop the whole search tree, instead develop part of the tree and evaluate promise of leaves using a static evaluation function.

ICS-270a:Notes 5: 11 Complexity of Game Playing Imagine we could predict the opponent’s moves given each computer move How complex would search be in this case? –worst case, it will be O(b d ) –Chess: b ~ 35 (average branching factor) d ~ 100 (depth of game tree for typical game) b d ~ ~ nodes!! –Tic-Tac-Toe ~5 legal moves, total of 9 moves 5 9 = 1,953,125 9! = 362,880 (Computer goes first) 8! = 40,320 (Computer goes second) well-known games can produce enormous search trees

ICS-270a:Notes 5: 12 Static (Heuristic) Evaluation Functions An Evaluation Function: –estimates how good the current board configuration is for a player. –Typically, one figures how good it is for the player, and how good it is for the opponent, and subtracts the opponents score from the players –Othello: Number of white pieces - Number of black pieces –Chess: Value of all white pieces - Value of all black pieces Typical values from -infinity (loss) to +infinity (win) or [-1, +1]. If the board evaluation is X for a player, it’s -X for the opponent Example: –Evaluating chess boards, –Checkers –Tic-tac-toe

ICS-270a:Notes 5: 13 General Minimax Procedure on a Game Tree For each move: 1. expand the game tree as far as possible 2. assign state evaluations at each open node 3. propagate upwards the minimax choices if the parent is a Min node (opponent) propagate up the minimum value of the children if the parent is a Max node (computer) propagate up the maximum value of the children

ICS-270a:Notes 5: 14 Minimax Principle “Assume the worst” –say each configuration has an evaluation number –high numbers favor the player (the computer) so we want to choose moves which maximize evaluation –low numbers favor the opponent so they will choose moves which minimize evaluation Minimax Principle –you (the computer) assume that the opponent will choose the minimizing move next (after your move) –so you now choose the best move under this assumption i.e., the maximum (highest-value) option considering both your move and the opponent’s optimal move. –we can extend this argument more than 2 moves ahead: we can search ahead as far as we can afford.

ICS-270a:Notes 5: 15 Applying MiniMax to tic-tac-toe The static evaluation function heuristic

ICS-270a:Notes 5: 16 Backup Values

ICS-270a:Notes 5: 17

ICS-270a:Notes 5: 18

ICS-270a:Notes 5: 19 Pruning with Alpha/Beta In Min-Max there is a separation between node generation and evaluation. Backup Values

ICS-270a:Notes 5: 20 Alpha Beta Procedure Idea: –Do Depth first search to generate partial game tree, –Give static evaluation function to leaves, –compute bound on internal nodes. Alpha, Beta bounds: –Alpha value for Max node means that Max real value is at least alpha. –Beta for Min node means that Min can guarantee a value below Beta. Computation: –Alpha of a Max node is the maximum value of its seen children. –Beta of a Min node is the lowest value seen of its child node.

ICS-270a:Notes 5: 21 When to Prune Pruning –Below a Min node whose beta value is lower than or equal to the alpha value of its ancestors. –Below a Max node having an alpha value greater than or equal to the beta value of any of its Min nodes ancestors.

ICS-270a:Notes 5: 22 Effectiveness of Alpha-Beta Search Worst-Case –branches are ordered so that no pruning takes place. In this case alpha-beta gives no improvement over exhaustive search Best-Case –each player’s best move is the left-most alternative (i.e., evaluated first) –in practice, performance is closer to best rather than worst-case In practice often get O(b (d/2) ) rather than O(b d ) –this is the same as having a branching factor of sqrt(b), since (sqrt(b)) d = b (d/2) i.e., we have effectively gone from b to square root of b –e.g., in chess go from b ~ 35 to b ~ 6 this permits much deeper search in the same amount of time

ICS-270a:Notes 5: 23 Iterative (Progressive) Deepening In real games, there is usually a time limit T on making a move How do we take this into account? –using alpha-beta we cannot use “partial” results with any confidence unless the full breadth of the tree has been searched – So, we could be conservative and set a conservative depth-limit which guarantees that we will find a move in time < T disadvantage is that we may finish early, could do more search In practice, iterative deepening search (IDS) is used –IDS runs depth-first search with an increasing depth-limit –when the clock runs out we use the solution found at the previous depth limit

ICS-270a:Notes 5: 24 Heuristics and Game Tree Search The Horizon Effect –sometimes there’s a major “effect” (such as a piece being captured) which is just “below” the depth to which the tree has been expanded –the computer cannot see that this major event could happen –it has a “limited horizon” –there are heuristics to try to follow certain branches more deeply to detect to such important events –this helps to avoid catastrophic losses due to “short-sightedness” Heuristics for Tree Exploration –it may be better to explore some branches more deeply in the allotted time –various heuristics exist to identify “promising” branches

ICS-270a:Notes 5: 25 Computers can play GrandMaster Chess “Deep Blue” (IBM) –parallel processor, 32 nodes –each node has 8 dedicated VLSI “chess chips” –each chip can search 200 million configurations/second –uses minimax, alpha-beta, heuristics: can search to depth 14 –memorizes starts, end-games –power based on speed and memory: no common sense Kasparov v. Deep Blue, May 1997 –6 game full-regulation chess match (sponsored by ACM) –Kasparov lost the match (2.5 to 3.5) –a historic achievement for computer chess: the first time a computer is the best chess-player on the planet Note that Deep Blue plays by “brute-force”: there is relatively little which is similar to human intuition and cleverness

ICS-270a:Notes 5: 26 Status of Computers in Other Games Checkers/Draughts –current world champion is Chinook, can beat any human –uses alpha-beta search Othello –computers can easily beat the world experts Backgammon –system which learns is ranked in the top 3 in the world –uses neural networks to learn from playing many many games against itself Go –branching factor b ~ 360: very large! –$2 million prize for any system which can beat a world expert

ICS-270a:Notes 5: 27 Summary Game playing is best modeled as a search problem Game trees represent alternate computer/opponent moves Evaluation functions estimate the quality of a given board configuration for the Max player. Minimax is a procedure which chooses moves by assuming that the opponent will always choose the move which is best for them Alpha-Beta is a procedure which can prune large parts of the search tree and allow search to go deeper For many well-known games, computer algorithms based on heuristic search match or out-perform human world experts. Reading: Nillson Chapter 12, R&N Chapter 5.

ICS-270a:Notes 5: 28 Minimax Search Example Look ahead several turns (we’ll use 2 for now) Evaluate resulting board configurations The computer will make the move such that when the opponent makes his best move, the board configuration will be in the best position for the computer

ICS-270a:Notes 5: 29 Propagating Minimax Values up the Game Tree Starting from the leaves –Assign a value to the parent node as follows Children are Opponent’s moves: Minimum of all immediate children Children are Computer’s moves: Maximum of all immediate children

ICS-270a:Notes 5: 30 Deeper Game Trees