MTH55_Lec-63_sec_9-4b_Log_Change_Base.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer Chabot Mathematics §9.4b Log Base-Change
MTH55_Lec-63_sec_9-4b_Log_Change_Base.ppt 2 Bruce Mayer, PE Chabot College Mathematics Review § Any QUESTIONS About §9.4 → Logarithm Properties Any QUESTIONS About HomeWork §9.4 → HW MTH 55
MTH55_Lec-63_sec_9-4b_Log_Change_Base.ppt 3 Bruce Mayer, PE Chabot College Mathematics Summary of Log Rules For any positive numbers M, N, and a with a ≠ 1
MTH55_Lec-63_sec_9-4b_Log_Change_Base.ppt 4 Bruce Mayer, PE Chabot College Mathematics Typical Log-Confusion Beware Beware that Logs do NOT behave Algebraically. In General:
MTH55_Lec-63_sec_9-4b_Log_Change_Base.ppt 5 Bruce Mayer, PE Chabot College Mathematics Change of Base Rule Let a, b, and c be positive real numbers with a ≠ 1 and b ≠ 1. Then log b x can be converted to a different base as follows:
MTH55_Lec-63_sec_9-4b_Log_Change_Base.ppt 6 Bruce Mayer, PE Chabot College Mathematics Derive Change of Base Rule Any number >1 can be used for b, but since most calculators have ln and log functions we usually change between base-e and base-10
MTH55_Lec-63_sec_9-4b_Log_Change_Base.ppt 7 Bruce Mayer, PE Chabot College Mathematics Example Evaluate Logs Compute log 5 13 by changing to (a) common logarithms (b) natural logarithms Soln
MTH55_Lec-63_sec_9-4b_Log_Change_Base.ppt 8 Bruce Mayer, PE Chabot College Mathematics Use the change-of-base formula to calculate log Round the answer to four decimal places Solution Example Evaluate Logs Check
MTH55_Lec-63_sec_9-4b_Log_Change_Base.ppt 9 Bruce Mayer, PE Chabot College Mathematics Find log 3 7 using the change-of-base formula Solution Example Evaluate Logs Substituting into
MTH55_Lec-63_sec_9-4b_Log_Change_Base.ppt 10 Bruce Mayer, PE Chabot College Mathematics Example Swamp Fever
MTH55_Lec-63_sec_9-4b_Log_Change_Base.ppt 11 Bruce Mayer, PE Chabot College Mathematics Example Swamp Fever This does NOT = Log3
MTH55_Lec-63_sec_9-4b_Log_Change_Base.ppt 12 Bruce Mayer, PE Chabot College Mathematics Logs with Exponential Bases For a, b >0, and k ≠ 0 Consider an example where k = −1
MTH55_Lec-63_sec_9-4b_Log_Change_Base.ppt 13 Bruce Mayer, PE Chabot College Mathematics Example Evaluate Logs Find the value of each expression withOUT using a calculator Solution
MTH55_Lec-63_sec_9-4b_Log_Change_Base.ppt 14 Bruce Mayer, PE Chabot College Mathematics Example Evaluate Logs Solution:
MTH55_Lec-63_sec_9-4b_Log_Change_Base.ppt 15 Bruce Mayer, PE Chabot College Mathematics Example Curve Fit Find the exponential function of the form f(x) = ae bx that passes through the points (0, 2) and (3, 8) Solution: Substitute (0, 2) into f(x) = ae bx So a = 2 and f(x) = 2e bx. Now substitute (3, 8) in to the equation.
MTH55_Lec-63_sec_9-4b_Log_Change_Base.ppt 16 Bruce Mayer, PE Chabot College Mathematics Example Curve Fit Now find b by Taking the Natural Log of Both Sides of the Eqn Thus the ae bx function that will fit the Curve
MTH55_Lec-63_sec_9-4b_Log_Change_Base.ppt 17 Bruce Mayer, PE Chabot College Mathematics WhiteBoard Work Problems From §9.4 Exercise Set 70, 74, 76, 78, 80, 82 Log Tables from John Napier, Mirifici logarithmorum canonis descriptio, Edinburgh, 1614.
MTH55_Lec-63_sec_9-4b_Log_Change_Base.ppt 18 Bruce Mayer, PE Chabot College Mathematics All Done for Today Logarithm Properties
MTH55_Lec-63_sec_9-4b_Log_Change_Base.ppt 19 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer Chabot Mathematics Appendix –