I. Prochazka 1, J. Kodet 1,2, J. Blazej 1 K.G. Kirchner 3, F. Koidl 3 Presented at Workshop on Laser solutions for Orbital Space Debris 27 - 28 April 2015,Laboratoire.

Slides:



Advertisements
Similar presentations
LIDAR TECHNOLOGIES FOR EARTH OBSERVATION January 2008 Dr Kim Hampton Lidar Technologies Ltd.
Advertisements

Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,
Studying the Physical Properties of the Atmosphere using LIDAR technique Dinh Van Trung and Nguyen Thanh Binh, Nguyen Dai Hung, Dao Duy Thang, Bui Van.
Upgrading Plans of the Chinese SLR Network Upgrading Plans of the Chinese SLR Network Yang FuMin(1), Wu Bin(1), Zhang ZhongPing(1), Guo TangYong(2), Zhao.
An Optical Receiver for Interplanetary Communications Jeremy Bailey.
Preliminary Results of Laser Ranging to Un-cooperative Targets at Shanghai SLR Station Yang FuMin, Zhang ZhongPing, Chen JuPing, Chen WanZhen, Wu ZhiBo,
The Preliminary Results of Laser Time Transfer (LTT) Experiment Yang Fumin(1), Huang Peicheng(1), Ivan Prochazka(2), Zhang Zhongping(1), Chen Wanzhen(1),
Ground Target kHz Laser Ranging with Submillimeter Precision Lukas Kral, Karel Hamal, Ivan Prochazka (1) Georg Kirchner, Franz Koidl (2) presented at kHz.
Gesine Steudle, Ingmar Müller, and Oliver Benson Humboldt-Universität zu Berlin Institut für Physik, AG Nano-Optik
Photon counting detectors for future space missions Ivan Prochazka, Josef Blazej Ulrich Schreiber * presented at 16 th International Workshop on Laser.
1 Development of Any Frequency Fire Rate SLR Control System Cunbo FAN, Xue DONG, Xingwei HAN, You ZHAO Changchun Observatory, , China.
16 years of LAGEOS-2 Spin Data from launch to present Daniel Kucharski, Georg Kirchner, Franz Koidl Space Research Institute Austrian Academy of Sciences.
Photon Counting Sensors for Future Missions
Progress in sub-picosecond event timing Ivan Prochazka*, Petr Panek presented at 16 th International Workshop on Laser Ranging Poznan, Poland, October.
Near-infrared (NIR) Single Photon Counting Detectors (SPADs)
Yu. Artyukh, V. Bespal’ko, E. Boole, V. Vedin Institute of Electronics and Computer Science Riga, LATVIA 16th International Workshop on Laser.
Rachel Klima (on behalf of the MASCS team) JHU/APL MASCS/VIRS Data Users’ Workshop LPSC 2014, The Woodlands, TX March 17,2014 MASCS Instrument & VIRS Calibration.
Shu Zhang (on behalf of the HXMT team) Institute of High Energy Physics, Chinese Academy of Science The current status of HXMT and its calibrations.
Photon detection Visible or near-visible wavelengths
SCH: LEADE LPM+AG 15/12/031 Non intercepting diagnostics based on synchrotron light from a bending magnet (started as “piggy back” on transverse profile.
G O D D A R D S P A C E F L I G H T C E N T E R Goddard Lidar Observatory for Winds (GLOW) Wind Profiling from the Howard University Beltsville Research.
H.-G. Moser Max-Planck-Institut for Physics, Munich CALOR 06 Chicago June 5-9, 2006 Silicon Photomultiplier, a new device for low light level photon detection.
TOF for ATLAS Forward Proton Upgrade AFP concept: adds new ATLAS sub-detectors at 220 and 420 m upstream and downstream of central detector to precisely.
Fast Detectors for Medical and Particle Physics Applications Wilfried Vogel Hamamatsu Photonics France March 8, 2007.
Experimental set-up Abstract Modeling of processes in the MCP PMT Timing and Cross-Talk Properties of BURLE Multi-Channel MCP PMTs S.Korpar a,b, R.Dolenec.
Optical principles of diffraction focussing, Preparing the way to space borne Fresnel imagers NiceSeptember 23-25, Laurent Koechlin Laboratoire.
WSO/UV-LSS Detector with large dimension MCP Baosheng Zhao* National Astronomical Observatories of CAS *
Main tasks  2 kHz distance measurements to 60 satellites  Precision: 2.5 mm single shot;
9 September 2009 Beam Loss Monitoring with Optical Fibers for Particle Accelerators Joint QUASAR and THz Group Workshop.
Experimental set-up for on the bench tests Abstract Modeling of processes in the MCP PMT Timing and Cross-Talk Properties of BURLE/Photonis Multi-Channel.
I. Milostnaya, A. Korneev, M. Tarkhov, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, O. Okunev, G. Chulkova, K. Smirnov, and G. Gol’tsman.
1 Development of Multi-Pixel Photon Counters (1) S.Gomi, T.Nakaya, M.Yokoyama, M.Taguchi, (Kyoto University) T.Nakadaira, K.Yoshimura, (KEK) Oct
PID for super Belle (design consideration) K. Inami (Nagoya-u) - Barrel (TOP counter) - Possible configuration - Geometry - Endcap (Aerogel RICH) - Photo.
C03 High speed photon number resolving detector with titanium transition edge sensors Daiji Fukuda, Go Fujii, R.M.T. Damayanthi, Akio Yoshizawa, Hidemi.
Energy determination at BEPC-II  Satellite Meeting «On the Need for a super-tau-charm factory» September 26 – 27, 2008, BINP, Novosibirsk, Russia M.N.
Institute of Experimental and Applied Physics Czech Technical University in Prague IEAP – CTU Prague 1 Current status and future development of neutron.
Ivan Procházka, Jan Kodet presented at : seminart ACES – ELT Meeting, Fundamental Station Wettzell, Technische Univ.Muenchen, Germany May 8, 2009 Czech.
I.Prochazka, CTU Prg Dec 2010 Ivan Procházka, Josef Blažej, Jan Kodet presented at : ELT meeting CTU in Prague, December 8, 2010 Czech Technical University.
Design for Wide FOV Cherenkov telescope upgrading THE 2 nd WORKSHOP OF IHEP Shoushan Zhang Institute of High Energy Physics.
I.Prochazka et al,ACES IWG meeting Neuchatel June 2014 European Laser Timing work progress Ivan Procházka, Josef Blažej (1), Jan Kodet (1,2) K.Ulrich Schreiber.
KHz SLR Station Graz Graz kHz LIDAR Georg Kirchner, Franz Koidl, Daniel Kucharski Institute for Space Research SLR Station Graz / Austria Poznan, Oct.
Towards a high-resolution fluorescence telescope B. Tomé (LIP) IDPASC School on Digital Counting Photosensors for Extreme Low Light Levels, Lisboa,
I.Prochazka et al,ACES ELT meeting Spring 2014 European Laser Timing work progress Ivan Procházka, Josef Blažej (1), Jan Kodet (1,2) presented at T2L2.
Ivan Procházka Josef Blažej, Jan Kodet presented at : ELT meeting CTU in Prague, December 8, 2010 Czech Technical University in Prague, Czech Republic.
Prospects to Use Silicon Photomultipliers for the Astroparticle Physics Experiments EUSO and MAGIC A. Nepomuk Otte Max-Planck-Institut für Physik München.
December Status of MRS photodiodes ND280 Convener’s Meeting, 9 June 2006 Yury Kudenko INR, Moscow.
Ivan Procházka presented at : seminart Institute of Astronomical and Physical Geodesy, Technische Univ.Muenchen, Germany October 27, 2008 Czech Technical.
I. Prochazka 1, J. Kodet 1,2, J. Blazej 1 K.G. Kirchner 3, F. Koidl 3 Presented at 2015 ILRS Technical Workshop, Matera, Italy, October 26 – 30,
October 2002Sienna, JL. Faure, DAPNIA/SPP In 8th Topical Seminar on Innovative Particle and Radiation Detectors Jean-louis Faure CEA-DAPNIA-SPP Progress.
ELT delays absolute calibration Ivan Procházka (1), Josef Blazej (1), Anja Schlicht (2) Prepared for ESA Webex meeting(s) March 2015 (1) Czech Technical.
Low Energy Response on Major Space Missions Was very good at 1/4-keV on HEAO-I Einstein ROSAT Since then much poorer due to Front side CCD electrode structure.
I.Prochazka, Tech.Univ.Munich, Germany.October 27, 2008 Gaining confidence – Breadboard demo, Prague n The entire Time transfer experiment may be carried.
Champaign, June 2015 Samir Kassi, Johannes Burkart Laboratoire Interdisciplinaire de Physique, Université Grenoble 1, UMR CNRS 5588, Grenoble F-38041,
Spectra distortion by the interstrip gap in spectrometric silicon strip detectors Vladimir Eremin and.
I.Prochazka,et al, KOM ESOC, Darmstadt, April 2016 SPACE SITUATIONAL AWARENESS PROGRAMME P2-SST-VII EXPERT COORDINATION CENTRES (PHASE 1) Contribution.
Status of NEWCHOD E.Guschin (INR), S.Kholodenko (IHEP), Yu.Kudenko (INR), I.Mannelli (Pisa), O.Mineev (INR), V.Obraztsov (IHEP), V.Semenov(IHEP), V.Sugonyaev.
Demonstration for cm-size space debris REDUCTION/REMEDIATION from the International Space Station Toshikazu Ebisuzaki, S. Wada, L.W. Pitrowski, M. Casolino.
DECam Spectrophotometric Calibration DECam calibration workshop, TAMU April 20 th, 2009 Jean-Philippe Rheault, Texas A&M University.
FARICH status E.A.Kravchenko Budker INP, Novosibirsk, Russia.
DEVELOPMENT OF PIXELLATED SEMICONDUCTOR DETECTORS FOR NEUTRON DETECTION Prof. Christer Fröjdh Mid Sweden University.
Progress report on SiPM development and its applications
10th Inkaba yeAfrica/!Khure Africa (AEON) Conference/Workshop
(WP2) Characterization of Novel Materials for APDs
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Validation of airborne 1
Recent Progress in Large Format PMTs
Fibre Lasers for SILIcon testing
Shanghai Institute of Technical Physics , Chinese Academy of Science
Development of microchannel plate phototubes in Novosibirsk
Metrological characterisation of single-photon avalanche diodes
Presentation transcript:

I. Prochazka 1, J. Kodet 1,2, J. Blazej 1 K.G. Kirchner 3, F. Koidl 3 Presented at Workshop on Laser solutions for Orbital Space Debris April 2015,Laboratoire APC, Université Paris Diderot, Paris, France 1 Czech Technical University in Prague, Prague, Czech Republic 2 TU Munich, Geodetic Observatory Wettzell, Bad Kötzting, Germany 3 Space Research Institute, Austrian Academy of Sciences, Graz, Austria Solid State Photon Counters for Laser Ranging to Orbital Space Debris

I.Prochazka et al, Laser solutions for Orbital Space Debris. Université Paris Diderot, 2015 OUTLINE n Requirements put on detectors n Detectors available - review n Si SPAD detectors n Ge, InGaAs SPAD detectors n Superconducting detectors n Conclusion

I.Prochazka et al, Laser solutions for Orbital Space Debris. Université Paris Diderot, 2015 Requirements put on detectors for space debris laser ranging n EXPERIMENT ENERGY BUDGET = > single photon response high Photon Detection Efficiency (PDE) n LASER SOURCES AVAILABLE & SAFETY = > 532 or 1064 or 1550 nm n OPTICAL TRACKING TELESCOPE FoV = >detector aperture >= (50) 100 um n FIELD OPERATION, ROBUST AND RELIABLE

I.Prochazka et al, Laser solutions for Orbital Space Debris. Université Paris Diderot, 2015 Photon counting detectors key parameters for laser ranging n VACUUM / PHOTOCATHODE based Apertures 1 mm.. 1 meter Wavelength rangeUV … nm Photon Detect.Eff. 30 % ….0.1 % n SEMICONDUCTING detectors Apertures up to0.5 mm Wavelength nm Si nm Ge / 77K nm InGaAs PDE70 %.. 1 % Si n SUPERCONDUCTING detectors (kryo-cooled) Apertures max.10 um (50 um ?) Wavelength532 … nm PDE> nm Si SPAD 500um, TE cooled Superconducting detector 10 x 10 um Hamamatsu photomultipliers

I.Prochazka et al, Laser solutions for Orbital Space Debris. Université Paris Diderot, 2015 Single Photon Detectors made by CTU since 1984 Si,200 um,TE cooled GaAs messa GaAsP, 350 um Complete detector packages 60 mm 130 mm Detector chips Active quenching and gating circuit I. Prochazka, Phys. Status Solidi, Vol 2, No.5, (2005)

I.Prochazka et al, Laser solutions for Orbital Space Debris. Université Paris Diderot, 2015 Si SPAD Detector Package for SLR n Detector aperture 200 um, f/D=1, => acceptable FoV n Photon Det. Efficiency >~ nm n Used by > 20 SLR stations worldwide n Applied for the first space debris laser tracking demonstration n Self-consistent compact package n SPAD 200 um, 3 x TE cooled in vacuum n collecting optics f/D = 1.0 n active quenching and gate circuit n 50 x 50 x 130 mm, 300 g I.Prochazka et al, Rev. Sci. Instrum. 84, (2013 )

I.Prochazka et al, Laser solutions for Orbital Space Debris. Université Paris Diderot, 2015 SPAD detector package for SLR applied for space debris laser tracking Shanghai, China, discarded US rocket (ID G) July 17, 2008 Mt. Stromlo, Australia, /..

I.Prochazka et al, Laser solutions for Orbital Space Debris. Université Paris Diderot, 2015 SPAD detector package with high PDE for space debris tracking n High Photon Detection Efficiency PDE n SAP500 detector by Laser Components n APD on Si, 0.5 mm diameter, ~ 100 V break. n PDE exceeds V ab (M.Stipcevic, 2011)

I.Prochazka et al, Laser solutions for Orbital Space Debris. Université Paris Diderot, 2015 SPAD detector package with high PDE #2 for space debris tracking n HQE Detector package developed n Standard SPAD housing & optics n Single TE cooling to -8 o C n 1 : 1 replaceable to other SPADs detectors at SLR systems mechanics/optics/signals/cables V ab < 25 15V ab Prochazka I, et al, Journal Advances in Space Research, JASR11779

I.Prochazka et al, Laser solutions for Orbital Space Debris. Université Paris Diderot, 2015 SPAD detector package with high PDE #3 Space debris tracking, G.Kirchner, F.Koidl, Graz August 2013 Range 2174 km targets distancesup to 3200 km targets cross section min 0.3 m 2 effective return quote 0.3 … 26 % ranging precision 0.3 … 4 m

I.Prochazka et al, Laser solutions for Orbital Space Debris. Université Paris Diderot, 2015 Germanium SPAD Detector Package for 1540 nm, n Ge SPAD, 100 um / 77 K n PDE nm n dark count >= 1 MHz n SLR and space debris 1540 nm demonstrated: CRL Tokyo, EOS Australia at Mt. Stromlo 250 mm H.Kunimori et al, Journal of Optics, Pure and Applied Optics, No.2 (2000), p1-4 I.Procházka et al, Optics Letters, Vol.21 (17), September 1, (1996), p

I.Prochazka et al, Laser solutions for Orbital Space Debris. Université Paris Diderot, 2015 InGaAs/InP Photon Detectors Fujitsu, ø 30 μm FPD5W1KS n Wavelength range VIS … 1550 nm n Active area60 um diameter max. n Detection efficiency> nm nm n Dark count rate< 25 kHz / - 60 C n InGaAs technology still in progress n candidate for 1064 nm operation in a near future Separate absorption multiplication APD S.Cova, NIST 2004, I.Procházka, Applied Optics, Vol 40, No 33, p.1-6, 2001

I.Prochazka et al, Laser solutions for Orbital Space Debris. Université Paris Diderot, 2015 Single Quantum superconducting nanowire single photon detectors Sensitive from UV to MIR High efficiency for NIR: >75% for 1310nm,>70% 1550nm Short dead time: 5-10 ns High time resolution: < 50 ps time jitter Low noise: tunable dark countrate Hz Small size 10 (50 ?) um diameter only G. Bulgarini, Val Zviler, Single Quantum BV, Lorentzweg 1, 2628CJ Delft, Netherlands

I.Prochazka et al, Laser solutions for Orbital Space Debris. Université Paris Diderot, 2015 Conclusion n Photon counting is the only receiver option for laser ranging to orbiting space debris. n SPADs based on Si provide good detection efficiency at 532 nm, existing, available, heritage n SPADs based on InGaAs are promising candidates for 1064 nm range, energy budget IF available n Supeconducting detectors are a dream for future systems operating at 1540 nm, energy budget, eye safety IF available n Good News -Europe is a leader in developing these detectors n We should not miss this chance ! n Thanks for your attention